首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The oxidation states of uranium in depleted uranium (DU) particles were determined by synchrotron radiation based mu-XANES, applied to individual particles isolated from selected samples collected at different sites in Kuwait. Based on scanning electron microscopy with X-ray microanalysis prior to mu-XANES, DU particles ranging from submicrons to several hundred micrometers were observed. The median particle size depended on sources and sampling sites; small-sized particles (median 13 microm) were identified in swipes taken from the inside of DU penetrators holes in tanks and in sandy soil collected below DU penetrators, while larger particles (median 44 microm) were associated with fire in a DU ammunition storage facility. Furthermore, the (236)U/(235)U ratios obtained from accelerator mass spectrometry demonstrated that uranium in the DU particles originated from reprocessed fuel (about 10(-2) in DU from the ammunition facility, about 10(-3) for DU in swipes). Compared to well-defined standards, all investigated DU particles were oxidized. Uranium particles collected from swipes were characterized as UO(2), U(3)O(8) or a mixture of these oxidized forms, similar to that observed in DU affected areas in Kosovo. Uranium particles formed during fire in the DU ammunition facility were, however, present as oxidation state +5 and +6, with XANES spectra similar to solid uranyl standards. Environmental or health impact assessments for areas affected by DU munitions should therefore take into account the presence of respiratory UO(2), U(3)O(8) and even UO(3) particles, their corresponding weathering rates and the subsequent mobilisation of U from oxidized DU particles.  相似文献   

2.
The oxidation states of uranium contained in depleted uranium (DU) particles were determined by synchrotron radiation based micro-XANES, applied to individual particles in soil samples collected at Ceja Mountain, Kosovo. Based on scanning electron microscopy (SEM) with XRMA prior to micro-XANES, DU particles ranging from submicrons to about 30 microm (average size: 2 microm or less) were identified. Compared to well-defined standards, all investigated DU particles were oxidized. About 50% of the DU particles were characterized as UO2, the remaining DU particles present were U3O8 or a mixture of oxidized forms (ca. 2/3 UO2, 1/3 U3O8). Since the particle weathering rate is expected to be higher for U3O8 than for UO2, the presence of respiratory U3O8 and UO2 particles, their corresponding weathering rates and subsequent remobilisation of U from DU particles should be included in the environmental or health impact assessments.  相似文献   

3.
A combination of synchrotron radiation based X-ray microscopic techniques (μ-XRF, μ-XANES, μ-XRD) applied on single depleted uranium (DU) particles and semi-bulk leaching experiments has been employed to link the potential bioavailability of DU particles to site-specific particle characteristics. The oxidation states and crystallographic forms of U in DU particles have been determined for individual particles isolated from selected samples collected at different sites in Kosovo and Kuwait that were contaminated by DU ammunition during the 1999 Balkan conflict and the 1991 Gulf war. Furthermore, small soil or sand samples heavily contaminated with DU particles were subjected to simulated gastrointestinal fluid (0.16 M HCl) extractions. Characteristics of DU particles in Kosovo soils collected in 2000 and in Kuwait soils collected in 2002 varied significantly depending on the release scenario and to some extent on weathering conditions. Oxidized U (+6) was determined in large, fragile and bright yellow DU particles released during fire at a DU ammunition storage facility and crystalline phases such as schoepite (UO3·2.25H2O), dehydrated schoepite (UO3·0.75H2O) and metaschoepite (UO3·2.0H2O) were identified. As expected, these DU particles were rapidly dissolved in 0.16 M HCl (84 ± 3% extracted after 2 h) indicating a high degree of potential mobility and bioavailability. In contrast, the 2 h extraction of samples contaminated with DU particles originating either from corrosion of unspent DU penetrators or from impacted DU ammunition appeared to be much slower (20–30%) as uranium was less oxidized (+4 to +6). Crystalline phases such as UO2, UC and metallic U or U–Ti alloy were determined in impacted DU particles from Kosovo and Kuwait, while the UO2,34 phase, only determined in particles from Kosovo, could reflect a more corrosive environment. Although the results are based on a limited number of DU particles, they indicate that the structure and extractability of DU particles released from similar sources (metallic U penetrators) will depend on the release scenarios (fire, impact) and to some extent environmental conditions. However, most of the DU particles (73–96%) in all investigated samples were dissolved in 0.16 M HCl after one week indicating that a majority of the DU material is bioaccessible.  相似文献   

4.
Soil samples collected from locations in Kosovo where depleted uranium (DU) ammunition was expended during the 1999 Balkan conflict were analysed for uranium and plutonium isotopes content (234U, 235U, 236U, 238U, 238Pu, (239 + 240)Pu). The analyses were conducted using gamma spectrometry (235U, 238U), alpha spectrometry (238Pu, (239 + 240)Pu), inductively coupled plasma-mass spectrometry (ICP-MS) (234U, 235U, 236U, 238U) and accelerator mass spectrometry (AMS) (236U)). The results indicated that whenever the U concentration exceeded the normal environmental values (approximately 2 to 3 mg/kg) the increase was due to DU contamination. 236U was also present in the released DU at a constant ratio of 236U (mg/kg)/238U (mg/kg) = 2.6 x 10(-5), indicating that the DU used in the ammunition was from a batch that had been irradiated and then reprocessed. The plutonium concentration in the soil (undisturbed) was about 1 Bq/kg and, on the basis of the measured 238Pu/(239 + 240)Pu, could be entirely attributed to the fallout of the nuclear weapon tests of the 1960s (no appreciable contribution from DU).  相似文献   

5.
A January 1966 accident dispersed Pu and other nuclear bomb materials in the vicinity of Palomares, a village in southeastern Spain. Radioactive particles were identified in a soil sample collected in 1998 and analytical results obtained from one of the isolated particles are presented here. Isolation of the particle was performed using gamma-ray spectrometry and imaging plates. Scanning electron microscopy with X-ray microanalysis revealed the presence of U and Pu as well as Pb and Fe in the particle of approximately 10microm diameter. Radioisotopes of U, Pu, and Am were quantified using radiometric methods, inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. The elevated (235)U/(238)U atom ratio indicates enriched U, and the Pu atom ratios are consistent with weapons-grade material. This work demonstrates that the analysis of individual particles provides information not available through bulk sample analysis.  相似文献   

6.
To improve long-term radioecological impact assessment for the contaminated ecosystem of Bylot Sound, Greenland, U and Pu containing particles have been characterized with respect to particle size, elemental distribution, morphology and oxidation states. Based on scanning electron microscopy with XRMA, particles ranging from about 20 to 40 microm were isolated. XRMA and mu-XRF mapping demonstrated that U and Pu were homogeneously distributed throughout the particles, indicating that U and Pu have been fused. Furthermore, mu-XANES showed that U and Pu in the particles were present as mixed oxides. U was found to be in oxidation state IV whereas Pu apparently is a mixture of Pu(III) and Pu(IV). As previous assessments are based on PuO2 only, revisions should be made, taking Pu(III) into account.  相似文献   

7.
Ambient concentrations and the elemental composition of particles less than 2.5 microm in diameter (PM2.5), as well as carbon monoxide (CO) concentrations, were measured at ground-level in three Guatemalan cities in summer 1997: Guatemala City, Quetzaltenango, and Antigua. This pilot study also included quantitative and qualitative characterizations of microenvironment conditions, e.g., local meteorology, reported elsewhere. The nondestructive X-ray fluorescence elemental analysis (XRF) of Teflon filters was conducted. The highest integrated average PM2.5. concentrations in an area (zona) of Guatemala City and Quetzaltenango were 150 microg m(-3) (zona 12) and 120 microg m(-3) (zona 2), respectively. The reported integrated average PM2.5 concentration for Antigua was 5 microg m(-3). The highest observed half-hour and monitoring period average CO concentrations in Guatemala City were 10.9 ppm (zona 8) and 7.2 ppm (zonas 8 and 10), respectively. The average monitoring period CO concentration in Antigua was 2.6 ppm. Lead and bromine concentrations were negligible, indicative of the transition to unleaded fuel use in cars and motorcycles. The XRF results suggested sources of air pollution in Guatemala, where relative rankings varied by city and by zonas within each city, were fossil fuel combustion emitting hydrocarbons, combustion of sulfurous conventional fuels, soil/roadway dust, farm/agricultural dust, and vehicles (evaportion of gas, parts' wear).  相似文献   

8.
The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 microm, 2-63 microm and >63 microm. 137Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of 134Cs/137Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between 137Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and 137Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to "ageing" processes of radiocaesium in soils.  相似文献   

9.
Thorium isotopes (228Th, 230Th, 232Th and 234Th) are useful tracers for studying particle dynamics and trace element scavenging in marine environments. In this study, surface waters were collected along a salinity gradient from the Jiulong River estuary, China, for determination of activity concentrations of 228Th, 230Th and 232Th in different size fractions, namely, the >53 microm, 10-53 microm, 2-10 microm, 0.4-2 microm, 10 kDa-0.4 microm and the <10 kDa fractions. Our results indicated that the activity concentrations of 228Th, 230Th and 232Th in the Jiulong River estuarine waters were significantly higher than most of the previously reported values in coastal and oceanic seawaters, suggesting a higher lithogenic U and Th contribution from the Jiulong River Basin. When normalized to the particulate mass concentration, the activity concentrations of the three thorium isotopes decreased with increasing particle size, demonstrating the important role of surface areas of particles in controlling the scavenging of thorium from the water column. The partitioning of three thorium isotopes showed a common characteristic, i.e., the >53 microm fraction had the least share (0-1%), while the 10-53 microm fraction had the largest share of Th isotopes. The average value of the 230Th/232Th activity ratio (230Th/232Th)(A.R.) increased from 0.8 in the >53 microm fraction to 3.7 in the 10 kDa-0.4 microm fraction, indicating that the radiogenic Th isotopes are preferentially scavenged by the small size particles. (230Th/232Th)(A.R.) in the <10 kDa and 10 kDa-0.4 microm fractions were similar, however, suggesting a similar chemical composition and/or equilibrium partitioning between the low molecular weight and colloidal Th. It was very interesting to note that the geochemical behaviors of the three Th isotopes were different from each other. Dissolved 228Th had the highest concentration in the mid-salinity region, showing a non-conservative behavior with additional input. In contrast, dissolved 232Th showed a concave profile, indicating a net removal of 232Th during the mixing of fresh water with seawater. The behavior of Th isotopes in the <10 kDa fraction followed those in the dissolved phases. The difference in geochemical behaviors among three Th isotopes was ascribed to their different sources in the estuary.  相似文献   

10.
Following the detection of 236U in depleted uranium (DU) ammunition used during the Balkans conflict in the 1990s, concern has been expressed about the possibility that other nuclides from the nuclear fuel cycle and, in particular, transuranium nuclides, might be present in this type of ammunition. In this paper, we report the results of uranium and plutonium analyses carried out on a depleted uranium penetrator recovered from a target site in southern Serbia. Our data show the depleted nature of the uranium and confirm the presence of trace amounts of plutonium in the penetrator. The activity concentration of (239+240)PU, at 45.4+/-0.7 Bq kg(-1), is the highest reported to date for any penetrator recovered from the Balkans. This concentration, however, is comparable to that expected to be present naturally in uranium ores and, from a radiological perspective, would only give rise to a very small increase in dose to exposed persons compared to that from the DU itself.  相似文献   

11.
The residence time of particulate contamination on the human body is a factor that has an important impact on the accuracy of exposure assessment in the aftermath of an accidental release of radionuclides to the atmosphere. Measurements of particle clearance from human skin were made using an illumination system to excite fluorescence in labelled silica particles and a CCD camera and image processing system to detect this fluorescence. The illumination system consists of high-intensity light emitting diodes (LEDS) of suitable wavelengths arranged on a portable stand. The physically small size of the LEDs allows them to be positioned close to the fluorescing surface, thus maximising the fluorescent signal that can be obtained. The limit of detection was found to be 50 microg of tracer particle per cm2. Experiments were carried out to determine the clearance rates of 10 microm and 3 microm particles from the skin. Results show that, in the absence of any mechanical rubbing of the skin, the clearance of particles from the skin followed an approximately exponential decay with a half-time of 1.5-7.8 h. Skin hairiness and degree of human movement were found, in addition to particle size, to have an important influence on particle fall-off rate.  相似文献   

12.
Information on the distribution of radiocaesium as a function of soil particle size is fundamental for its use as tracer in soil transport. Since the processes involved in soil erosion are known to remove and transport finer particles with larger efficiency, the aim of this work was to obtain data on the particle size versus radionuclide content distribution regarding the reference site of a soil erosion study. The analysis done was based on more than 5kg of source material and the changes happened to the radionuclide content of the different size fractions between the individual separation steps have been carefully monitored. About 10% of the total amount of (137)Cs present was found to be trapped in the serrations of larger stone-fragments while another 10% is transportable only during heavier storm-events. Within the remaining 80%, physical weathering products and clay particles have a (137)Cs-activity concentration, transportability and mass ratio of about 1:10, 1:2 and 1:1, respectively.  相似文献   

13.
This paper reports results of gamma and alpha spectrometric measurements for mosses, lichens, fungi and soil samples from areas in the Balkans targeted by depleted uranium (DU). Samples were collected in 2002 and 2003 in the vicinity of several villages, principally Han Pijesak (Bosnia and Herzegovina, hit by DU in 1995) and Bratoselce (South Serbia, hit by DU in 1999) and in lesser numbers from Gornja Stubla, Kosovo (which is identified as a high natural radon/thoron area) and Presevo close to the Kosovo border. In the course of gamma spectrometric measurements some results suggested samples with unusual high uranium contents which might be considered to be a signature for the presence of DU, although many samples had very high detection limits. Alpha spectrometric measurements directly proved the presence of DU for five samples, all from directly targeted places. These were samples of mosses, lichens and soil. For some samples homogeneity tests were applied which showed a rather even distribution of DU in these samples. No trace of DU was found in any sample from a dwelling.  相似文献   

14.
The biokinetics of uranium migrating from embedded DU fragments   总被引:4,自引:0,他引:4  
Military uses of depleted uranium (DU) munitions have resulted in casualties with embedded DU fragments. Assessment of radiological or chemical health risks from these fragments requires a model relating urinary U to the rate of migration of U from the fragments, and its accumulation in systemic tissues. A detailed biokinetic model for U has been published by the International Commission on Radiological Protection (ICRP), but its applicability to U migrating from embedded DU fragments is uncertain. Recently, Pellmar and colleagues (1999) conducted a study at the Armed Forces Radiobiology Research Institute (AFRRI) on the redistribution and toxicology of U in rats with implanted DU pellets, simulating embedded fragments. This paper compares the biokinetic data from that study with the behavior of commonly studied forms of U in rats (e.g., intravenously injected U nitrate). The comparisons indicate that the biokinetics of U migrating from embedded DU is similar to that of commonly studied forms of U with regard to long-term accumulation in kidneys, bone, and liver. The results provide limited support for the application of the ICRP's model to persons with embedded DU fragments. Additional information is needed with regard to the short-term behavior of migrating U and its accumulation in lymph nodes, brain, testicles, and other infrequently studied U repositories.  相似文献   

15.
The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg−1. Five biological endpoints: mortality, animals’ weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.  相似文献   

16.
Measurements of resuspended aerosol in the Chernobyl 30-km exclusion zone have shown coarse fuel hot particles in the activity range 1-12 Bq 137Cs per particle. The particles were sampled with newly designed rotating arm impactors which simultaneously collect during the same experiment three samples with fuel particles in the size ranges larger than 3 microns, larger than 6 microns and larger than 9 microns in geometric diameter. The radionuclide ratios, determined after gamma-spectrometry, were in good agreement with the theoretical calculations for the radionuclide-composition of the Chernobyl Nuclear Power Plant at the moment of the accident and the measured hot particles in soil in the early years after the accident. The number concentrations of airborne hot particles were derived from digital autoradiography. For wind resuspension, maximal concentrations of 2.6 coarse hot particles per 1000 m3 and during agricultural activities 36 coarse hot particles per 1000 m3 were measured. The geometric diameter of single hot particles was estimated to be between 6 and 12 microns.  相似文献   

17.
During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg(-1) for (238)U, 0.24-16.8 Bq kg(-1) for (234)U, and 0.02-1.11 Bq kg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the (236)U in some of the samples was detectable. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 m Bq l(-1) for (238)U, 0.41-15.6 m Bq l(-1) for (234)U and 0.012-0.695 m Bq l(-1) for (235)U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants.  相似文献   

18.
The radioactivity of 238U, 226Ra, 232Th, 40K and 137Cs in sediments, soil, turf and honey from Serbia and Kosovo (Yugoslavia) was measured using gamma and alpha spectrometry in order to estimate the radiation hazard from natural and man-made sources, as well as to compile a database for radioactivity levels in those regions. One sample, collected in the vicinity of a "depleted uranium" (DU) shell of the recent Balkan war, revealed a high 238U activity and a non-natural 235U/238U activity ratio, confirming therefore its anthropogenic origin. However, some other soil samples coming from characteristic DU craters did not show any characteristic level of radioactivity. The other sediment and turf samples taken all around the country show low radioactivity levels for all the isotopes here considered. With the aim of obtaining some indication about radioactivity migration in the food chain, several honey samples have been examined too. All samples show very low radioactivity content, often indistinguishable from natural background.  相似文献   

19.
For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.  相似文献   

20.
Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 μmol U L−1, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号