首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
南京北郊冬季大气粗细颗粒物中PAHs来源解析   总被引:1,自引:0,他引:1  
为研究南京冬季大气颗粒物中PAHs来源情况,利用FA-3型气溶胶采样器从2007年11月20日到12月30日在南京郊区分昼夜采集气溶胶样品,并用GC-MS对16种优控PAHs浓度进行定量分析,采用PCA法对其来源进行解析.结果表明,南京冬季细颗粒物中PAHs浓度明显高于粗颗粒物中PAHs浓度,单种类PAH浓度表现出昼夜差异,日间低分子量PAHs含量高于夜间,而夜间高分子量PAHs浓度则相对较高;主成分分析对PAHs源解析结果表明,南京北郊大气颗粒物中PAHs主要来源为机动车尾气、燃煤源、焦化源、天然气燃烧和烹调源等,粗细颗粒物中PAHs排放源差异明显,细颗粒物部分表现出明显的昼夜差异,同时,外来源和不确定源占有较大比重.  相似文献   

2.
利用GC-MS对2008年5月至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析.结果表明,不同采样点PM10浓度均偏高,超标率为14%—238%;PM10浓度水平为谢家集田十五小大通三小淮化集团理工校园.研究区内16种PAHs浓度总量的范围在15.20ng.m-3—111.58ng.m-3之间,平均浓度为64.36ng.m-3,4环以上的稠环芳烃占总浓度的86%.PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季春季夏季.运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小.  相似文献   

3.
2007年2月在攀枝花市不同功能区采集了大气PM10样品42个和污染源样品32个,采用超声抽提GC/MS方法测定分析了16种多环芳烃(PAHs)的含量。结果显示攀枝花市PM10颗粒相PAHs单体浓度范围为0.34~416.45ng/m3,总量浓度范围为24.56~2569.66ng/m3;攀枝花市5个采样点中河门口片区PM10多环芳烃单体浓度范围为5.64~416.45ng/m3,污染最严重。源样品测定结果分别为扬尘78.74ug/g,煤烟尘6.12ug/g,钢铁工业尘30.54ug/g,焦化尘3187.42ug/g。应用比值法和化学质量平衡(CMB)模型对污染源进行识别,燃煤和炼焦是攀枝花市PAHs的主要来源,对攀枝花市大气可吸入颗粒物中多环芳烃污染的分担率分别为55.8%、19.9%。  相似文献   

4.
黄海近岸表层沉积物中多环芳烃来源解析   总被引:10,自引:0,他引:10  
采集了黄海近岸(日照岚山海域)12个站位的表层沉积物样品,利用气相色谱-质谱仪(GC-MS)分析了样品中16种多环芳烃(PAHs)的含量,结果显示16种PAHs含量范围在76.384~7512.023 ng·g-1,平均值为2622.576 ng·g-1.低环PAHs组分所占比重较大,中高环PAHs相对较小.利用比值法定性解析PAHs的来源,初步判断PAHs可能来自燃煤、燃油、焦化、柴油泄漏等污染源.进一步引用相关源成分谱,应用化学质量平衡模型(CMB8.2)对PAHs的来源进行定最解析,拟合计算结果表明研究海域表层沉积物中PAHs的主要来源为燃煤源、燃油源(主要为柴油燃烧)和焦炉源,其相对贡献率分别为53.99%、25.57%和13.97%.  相似文献   

5.
北京大气颗粒物中多环芳烃浓度季节变化及来源分析   总被引:13,自引:1,他引:12  
使用大流量滤膜采样器,从2006年9月至2007年8月,每周同时采集北京城市大气可吸入颗粒物(PM10)和细粒子样品(PM2.5)各一次,二氯甲烷超声抽提一气相色谱/质谱分析了17种多环芳烃(PAHs)浓度,结果表明,春、夏、秋、冬四季北京大气PM10和PM2.5中PAHs总量分别为63.8±44.6ng·m-3、43.2±4.5ng·m-3、84.7±108.3ng·m-3、348.0±250.0ng·m-3和54.7±17.3ng·m-3、40.3±8.6ng·m-3、66.1±81.5ng·m-3、337.7±267.2ng·m-3;约有70%的PAHs存在于细粒子PM2.5中,其质量浓度有明显季节变化,冬季>秋季>春季>夏季;颗粒物中PAHs主要以4、5、6环存在,其中4环以上占79.4%.源解析表明,北京大气颗粒物中的PAHs主要来自燃煤,同时汽油、柴油燃烧排放也不能忽略.结合气象要素分析,温度升高和太阳辐射增强易造成多环芳烃挥发和反应,湿沉降有利于多环芳烃随颗粒物清除.  相似文献   

6.
武汉秋冬季大气PM2.5中多环芳烃的分布特征及来源   总被引:1,自引:0,他引:1  
采集了2011—2012年武汉市工业区、交通区和植物园的3个功能区的秋冬2季大气PM2.5样品,采用超声提取预处理和GC/MS分析检测了PM2.5中27种PAHs,探讨了其时空分布特征,然后运用主成分分析/多元线性回归法解析了PAHs的来源.结果表明:PAHs的质量浓度范围为24.705~112.490 ng·m-3,PAHs的质量浓度分布呈现出工业区>交通区>植物园的规律;冬季PAHs质量浓度高于秋季等特征.不同环数PAHs质量浓度呈现出规律变化为:5环>4环>2-3环>6-7环,4环、5环的 PAH 含量比例高表明机动车尾气和煤燃烧排放是主要排放源.不同功能区化合物的比值指示来源略有不同,但总体指明了武汉主要污染源来自燃煤和机动车尾气的排放.源解析结果显示,工业区的污染源主要来自于燃煤,其贡献率为55%,其次为汽油燃烧、柴油燃烧、焦炉和轻质油燃烧.在交通区中,车辆尾气排放(34%)和天然气燃烧(25%)的贡献较大,其次是烹饪、燃煤及木材燃烧.植物园对照区的主要污染源分别是木材燃烧、燃煤、天然气燃烧、车辆排放和烹饪,其中木材燃烧(46%)的贡献最大.  相似文献   

7.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

8.
吉林省典型城市大气中PAHs来源解析   总被引:1,自引:0,他引:1  
通过对吉林省4个典型城市,即吉林、白城、四平和通化市大气颗粒物中多环芳烃(PAHs)的采样和分析,得到16种PAHs的成分谱,应用主因子分析和特征比值法对其进行定性研究,得到吉林省大气中PAHs的2种主要来源--车辆尾气和燃煤。并应用绝对主因子分析法进一步定量计算这2种源对PAHs的浓度贡献值及贡献率,结果表明:吉林省典型城市PAHs解析值为772.39μg·g-1,绝大多数解析值与监测值之间的比值接近于1,车辆尾气对各PAH的贡献率为2.6%~67.6%,燃煤源的贡献率为24.1%~121.2%。另外,该研究还计算了已识别的2种源对于不同环数的PAHs的贡献,2~3环的PAHs大部分来自于燃煤,约占总体的89%,车辆尾气仅占11%;4环的PAHs约58%来源于燃煤,42%来源于车辆尾气;5环的PAHs约45%来源于燃煤,55%来源于车辆尾气;6环PAHs来源于燃煤的占61%,来源于车辆尾气的占39%。  相似文献   

9.
PM10是衡量大气环境质量好坏的重要指标之一;多环芳烃(PAHs)是具有强烈致癌性的有机污染物,大多吸附在粒径小于10 μm颗粒物上.利用长期定位实验采集了南京市两典型功能区--大厂地区和山西路的PM10样品,对其PAHs质量浓度进行了分析测定,研究了不同功能区PM10中PAHs的时空污染特性.研究结果表明:南京市PM10污染比较严重,其质量浓度变化范围在0.1157 mg·m-3~0.3913 mg·m-3之间;经分析PM10中16种优控多环芳烃(PAHs)发现,全年大厂地区的PAHs的质量浓度与山西路PAHs的质量浓度没有明显的高低之分;PAHs总质量浓度的空间变化不明显,时间变化也没有规律性;比较PM10与PAHs的月平均质量浓度变化趋势,两者之间的变化没有相关性,各自的质量浓度变化也没有规律性,分析其结果可能是由于PAHs的不稳定性造成的.  相似文献   

10.
于2015年6月采集日照市岚山化工园区和临沂市罗庄华宇电解铝厂周围土壤样品,分析了16种多环芳烃(PAHs)的含量和组成,研究了距化工区不同距离的土壤中PAHs含量和组成的变化、来源及健康风险.结果表明,岚山化工园区周围土壤中PAHs总含量(∑_(16)PAHs)(2764.2—3435.9μg·kg~(-1))略高于华宇电解铝厂周边土壤中∑_(16)PAHs(2729.7—3047.5μg·kg~(-1)),均达到重度污染.两化工厂周边土壤中各环数PAHs所占比例大小顺序均为4环5环3环2环和6环,但各PAHs化合物的组成存在差异.距化工区越远,土壤中∑_(16)PAHs含量越低,但各环数PAHs含量变化不一致.同分异构体比值法结果表明,两化工厂PAHs主要来源是燃煤和石油燃烧.正定矩阵因子分解法表明,岚山化工园区周围土壤PAHs的来源中燃煤源占36%,汽油和柴油燃烧源占21.6%,生物质燃烧源占19.1%,石油源和焦炭燃烧混合源占19.3%.华宇电解铝厂周围土壤PAHs的来源中燃煤源占33.5%,汽油燃烧源占24.8%,柴油燃烧源占31.4%,生物质燃烧源占10.3%.岚山化工园区周围土壤PAHs来源中燃煤源所占比例高于华宇电解铝厂,汽油和柴油燃烧源所占比例低于华宇电解铝厂.岚山化工园区和华宇电解铝厂周边土壤中PAHs的总Ba P_(eq)平均值分别为326.7μg·kg~(-1)和441.1μg·kg~(-1),均低于加拿大土壤质量指导值600μg·kg~(-1).健康风险评估表明,华宇电解铝厂总ILCRs值(3.9×10~(-6)—6.0×10~(-6))高于岚山化工园区(2.9×10~(-6)—4.5×10~(-6)).两化工厂周围土壤总ILCRs值大于1×10~(-6),均存在潜在的致癌风险.  相似文献   

11.
有机废水厌氧酸化和聚羟基烷酸生产组合系统的研究   总被引:6,自引:0,他引:6  
以30g/L葡萄糖合成废水为原料,研究了厌氧酸化的操作温度(θ)对酸化率的影响,确定了达到最佳酸化产物分布时的pH值,并以酸化反应器的出水为碳源,在5L发酵罐上进行了分批和流加发酵实验.结果表明,θ=40℃时,废水的酸化率接近100%;控制pH5.7,停留时间10h可使丁酸占UASB反应器出水中总酸质量的68%;与分批发酵相比,流加发酵法可大幅度地提高PHA的产量,发酵54h后,DCW和PHA的质量浓度可分别达到15.8g/L和10g/L.  相似文献   

12.
北京市西北郊大气气溶胶中多环芳烃的源解析   总被引:6,自引:0,他引:6  
用气相色谱-质谱技术对北京市西北郊2005-2006年大气气溶胶样品中的多环芳烃进行分析检测,并运用比值法、主成分分析/多元线性回归和正矩阵因子分解对多环芳烃的来源进行解析主成分分析/多元线性回归表明,机动车尾气、燃煤和生物质燃烧的贡献率分别为70.27%,21.84%和7.89%.正矩阵因子分解表明,汽油车的贡献较大,且各个季节都占优势;冬季燃煤的贡献增加,秋季生物质燃烧的贡献增大.多环芳烃的比值表明其主要来自于本地源.  相似文献   

13.
在浓度场基础上,利用总磷、总氮和COD三项指标的综合指数法,结合管理部门提供的资料,划分了滇不不环境保护功能区,给出了划分指标值及功能区划分图。  相似文献   

14.
应用主成分分析,将影响水稻产量的一系列因子概括为四个主要因子:(1)土壤肥力因子,(2)栽插措施因子,(3)田间管理因子;(4)产量性状因子。将上述因子作为自变量,水稻产量作为因变量,进行逐步回归分析,得到一个产量预测模型(R=0.962)。根据各变量的回归系数大小,可以得到产量决定因子对产量影响的大小顺序为,田间管理因子>土壤肥力因子。栽插措施因子和产量性状因子对水稻产量的影响未达显著水平。 文中所述的分析方法适用于在不同的土壤条件下预测作物产量的潜在变化。  相似文献   

15.
三种不同树脂对硫辛酸吸附行为的研究   总被引:3,自引:0,他引:3  
通过静态吸附实验,研究了XAD-4,NDA-100和ND-90树脂对乙醇.水溶液中硫辛酸的吸附热力学及动力学特性.结果表明:硫辛酸在XAD-4树脂上是单层吸附,符合Langmuir等温吸附方程,吸附过程符合准一级动力学吸附方程.在NDA-100和ND-90树脂上的吸附也符合Langmuir等温吸附方程,但并不只是单层吸附,同时兼有毛细管凝聚和微孔填充作用,吸附过程可分为大孔和中孔区吸附以及微孔区吸附两个阶段,两个阶段都符合准一级动力学吸附方程.  相似文献   

16.
研究了利用食品废弃物进行厌氧酸化的各种条件。结果表明,当食品废弃物与水的质量比为1:3、食品废弃物厌氧酸化液pH值为6.5以及酸化温度为30℃时,对酸化后废液中各有机酸的产生有利,酸化过程中总有机酸产量最大为25~35g/L,特别当在食品废弃物厌氧酸化液中加入丁酸梭菌活菌制剂后,酸化过程发生了显著的变化。本文还研究了真氧产碱杆菌(Raltonia eutropha)利用食品废弃物厌氧酸化生成的有机酸进行聚羟基烷酸酯(polyhydroxyal-kanoates)合成的摇瓶分批发酵过程,图5参11。  相似文献   

17.
几种化感物质对杉木幼苗生长的影响   总被引:25,自引:1,他引:25  
采用培养皿滤纸法 ,研究了不同浓度的肉桂酸、苯甲酸、对羟基苯甲酸对杉木 (Cunninghamialanceolata)幼苗生长的影响 .结果表明肉桂酸、苯甲酸、对羟基苯甲酸分别在 1× 10 -5molL-1、1× 10 -3molL-1、1× 10 -4 molL-1浓度时降低了叶绿素含量 (P =0 .0 5 ) ,而在 1× 10 -6molL-1、1× 10 -4 molL-1、1× 10 -5molL-1浓度时抑制了杉木幼苗胚根和胚芽的生长 (P =0 .0 1) .3种酚类物质对胚根生长的抑制作用明显高于对胚芽生长的抑制作用 .在 3种酚类物质中 ,肉桂酸对杉木幼苗生长的抑制作用最强 ,对羟基苯甲酸次之 ,苯甲酸最弱 .这表明酚类物质能在不同程度上抑制杉木幼苗的生长 ,降低其生产力 ,可能是连栽杉木人工林生产力降低的因素之一 .图 2表 1参 14  相似文献   

18.
铬分光光度法测定的改进   总被引:4,自引:0,他引:4  
本文采用过硫酸铵氧化法代替高锰酸钾法,用于铬的二苯碳酰二肼比色分析。本法的精密度为0.83%,而高锰酸钾氧化法的精密度为5.81%;t_(0.05)时,P<0.05,另外,用灰化法对含微量铬的生物样品进行预处理,有可能使本来不含Cr(Ⅵ)的样品产生Cr(Ⅵ),而含Cr(Ⅵ)的样品测不出Cr(Ⅵ)。  相似文献   

19.
典型消油剂对溢油鉴别生物标志物指示作用的影响   总被引:3,自引:0,他引:3  
在一定条件下,分别对添加消油剂的原油和重质燃料油进行了风化模拟实验,采用气相色谱质谱联用(GC-MS)对风化样品中的生物标志化合物进行了检测,通过生物标志化合物特征比值的变化趋势,对以往溢油鉴别过程中常规生物标志化合物特征比值进行筛选.结果表明,在溢油经消油剂处理后,以往经常选用的指纹信息(主峰碳数、CPI、(C21+C22)/(C28+C29)、C21前/C22后、Pr/Ph(姥鲛烷/植烷)、Pr/C17、Ph/C18)受到消油剂中相关组分的干扰,失去指示意义;消油剂加剧了某些多环芳烃及其烷基化系列生物标志化合物的风化作用,使与其相关的生物标志化合物比值(C2-D/C2-P、C3-D/C3-P、ΣP/ΣD、2-MP/1-MP、4-MD/1-MD)失去指示意义;绝大部分甾、萜烷类生物标志化合物的抗风化能力较强,相关比值仍具有较好的指示意义.  相似文献   

20.
活性污泥过程数学模型进展   总被引:3,自引:0,他引:3  
姚重华  刘勇弟 《环境化学》2002,21(6):521-527
介绍了活性污泥过程模型ASM1,ASM2及ASM3的建模方法,并分析了各模型的微生物学基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号