共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
宣化城区大气TSP浓度分布预测及控制措施 总被引:1,自引:0,他引:1
根据宣化区燃料消耗量和TSP直接排放量 ,统计出全区TSP排放总量。在明确了排放源参数和气象参数的前提下 ,利用ISCST3模型模拟预测TSP浓度空间分布。各受体点的TSP夏季平均浓度值有 2 0 6%超二级标准 ,冬季平均浓度值有 3 4 9%超二级标准。烈士陵园的污染状况明显好于区政府 ,而区政府则明显好于焦化厂 ,焦化厂的全年TSP月平均浓度均超二级标准。通过对TSP污染原因进行分析 ,针对宣化区的特殊情况提出了控制对策 相似文献
3.
城市大气TSP浓度影响因素分析 总被引:1,自引:0,他引:1
城市大气中TSP(总悬浮颗粒物)的产生与该市工业生产规模、经济发展状况、科学技术水平、环境管理能力、市政建设、居民生活水平以及气候气象条件等诸多因素有关,上述各种因素的综合作用导致出现大气TSP污染。实际上欲将影响TSP浓度水平的所有因 相似文献
4.
孙志国 《辽宁城乡环境科技》1997,17(4):19-20
朝阳市区大气中TSP污染较重。本文采用灰色关联度方法,对与TSP污染有关的诸种因素进行关联分析,结果表明,垃圾清运量、道路清扫面积与耗煤量与TSP浓度关联较密切。 相似文献
5.
北京东南郊大气TSP中多环芳烃浓度特征与影响因素 总被引:8,自引:2,他引:8
对2005-03~2006-01北京市东南郊3个采样点大气总悬浮颗粒物(TSP)样品进行分析,总结了研究区内TSP以及TSP中16种PAHs的浓度特征和季节变化规律.研究区内16种PAHs浓度总和的范围在0.29~1?184.48 ng/m3之间,均值为239.44 ng/m3;分别用气象参数(温度、风速、气压、相对湿度)和大气API指数(二氧化硫、二氧化氮、PM10)与PAHs浓度进行了偏相关分析,结果表明温度和SO2的API指数与PAHs浓度相关显著,应用逐步回归方法得到PAHs对气象参数和大气API指数的回归方程,分别为∑16PAHs=572.56-23.18t和∑16PAHs=5.99 SO2,可以利用温度和SO2的API指数对PAHs浓度进行估算. 相似文献
6.
7.
广州市大气TSP浓度变化及其与气象因子的关系 总被引:1,自引:0,他引:1
利用实地监测大气TSP浓度和局地气象数据,研究了2005年至2006年广州市不同功能区大气TSP浓度变化及其与气象因子的关系。结果表明,工业区大气TSP月平均浓度0.273mg/m3最高,显著高于交通繁忙区的0.207mg/m3;极显著高于商业区的0.180mg/m3、社区的0.155mg/m3和对照郊区的0.142mg/m3。研究显示,广州市大气TSP污染仍然比较严重。广州市大气TSP浓度与降雨呈现负相关性,与温度呈极显著的负相关性,与相对湿度呈显著的负相关性,与风速呈负相关性,与风向的相关性不明显。各功能区大气TSP浓度与局地气象因子也存在类似的规律。 相似文献
8.
1 前言近年来,上海市大气中总悬浮微粒(TSP)的浓度有所控制。粒径小于10μm的飘尘(IP),也称被吸入物质,对人体健康影响更大。我们测定了某地区大气中TSP和IP浓度。测定结果表明,IP浓度的变化规律与TSP浓度变化规律一致。 2 实验部分 2.1 采样采样点设在四周空旷,通风良好的地段,采样口相对高度为1.2m。采样仪器为,Model—220TH环境飘尘采样器,美国热电子公司生产;Model AH-600安德逊粉尘采样器,日本纪本公司生产。 2.2 浓度测定均以重量法测定浓度。 3 结果 3.1 TSP与IP浓度变化关系图1为TSP与IP浓度随时间变化的示意。 相似文献
9.
本文利用灰色系统建立了牡丹江市区总悬浮颗粒物浓度预测模型,对市区未来8年总悬浮颗粒物浓度进行了预测,为治理我市污染源,控制大气污染提供了有利的参考依据。 相似文献
10.
太原市2014年春节期间常规大气污染物浓度变化及聚类分析 总被引:4,自引:1,他引:4
为了探寻太原市春节期间不同监测站点各常规大气污染物的质量浓度变化规律及相互之间的关系,记录和收集了太原市上兰、南寨、涧河、尖草坪、桃园、坞城、小店、金胜、晋源9个监测点2014年农历小年至元宵节(2014-01-23—2014-02-14)期间的大气PM2.5、PM10、CO、NO2、O3、SO2小时浓度值以及相应的气温、气压、湿度、风级、能见度等气象数据,采用相关分析、小波分析、单因子污染指数评价和系统聚类等方法进行研究,发现:1该时段内就太原市总体而言,PM2.5超标倍数最大,其次是PM10、SO2、CO、NO2,O3污染最小.2农历小年、除夕、正月初八、元宵节大气PM2.5和PM10的浓度迅速增加,与自然气象因子基本无关,说明烟花爆竹的集中燃放对大气颗粒物尤其是细颗粒物产生较大影响.3SO2、NO2、CO与PM2.5和PM10浓度变化的波动趋势相似、主周期相同,反映了部分PM2.5和PM10与SO2、NO2、CO有共同的来源;O3的波动趋势及主周期与上述污染物完全不同,显示出它来源的特殊性.4按PM2.5聚类,南寨、涧河、尖草坪、桃园4个点聚为一类,小店和坞城2个点聚为一类,金胜和晋源聚为一类,位于太原市最北端作为清洁对照的上兰监测点自成一类,与它们的地理位置有较好的相符性,同时,聚类分析结果与各监测点的单因子污染指数评价结果相一致.本文提示小波分析与聚类分析相结合可以较好地反映城市大气污染物浓度变化的时间与空间分布规律. 相似文献
11.
依据太原市环境空气质量监测数据,采用Daniel趋势检验法,综合污染指数法和回归分析法研究了“十一五”期间太原市的环境质量变化趋势和影响因素.结果表明,从年均浓度值分析来看,除NO2外,SO2和PM10都存在超标现象,长期来看,三种污染物浓度下降趋势明显,这与太原市环境保护行动密切相关.月际间浓度值差异除PM10在春季出现波动外,SO2和NO2均呈现“U”型曲线,这种规律与气象条件密切相关.三种主要大气污染物污染指数都有所下降,但太原市区空气污染仍以SO2和PM10为主,说明烟煤型污染的空气污染特征没有改变.主要大气污染物的空间浓度分布不均与地形和气象特征以及城市布局和污染源排放有直接关系.太原市“十一五”期间大气环境质量整体改善,但形势依然严峻. 相似文献
12.
杭州市超细微粒数浓度和粒径分布特征 总被引:2,自引:0,他引:2
应用FMPS(fast mobility particle sizer)对杭州市城区和城郊工业园区超细微粒的数浓度及粒径分布进行现场跟踪测量,并对数据进行分析.结果表明:杭州市大气超细微粒在5~500 nm内,主要呈对数双峰分布,峰值粒径多处在10~50 nm间.城郊工业园区的平均总数浓度最高,达4.11×104 cm-3,最高值出现在中午,而城区的峰值粒径区间整体右移,表明超细微粒污染较轻.超细微粒数浓度在上午和下午的上、下班期间出现不同程度上升,夜间浓度普遍降低,但偶有波动.部分工厂有夜间工作情况,故夜晚空气质量的下降也应引起重视. 相似文献
13.
利用2016~2020年太原市污染物浓度资料、以及国家基准气象观测站的同期地面气象资料,重点分析了太原市PM2.5浓度的变化特征以及湿度、降水、风和混合层厚度等气象条件对PM2.5浓度的影响,同时探讨了污染物浓度变化的成因,建立基于LSTM神经网络的PM2.5浓度预报模型.结果表明,2016~2020年太原市区冬季出现的重污染天数最多,其中2017年冬季出现天数最多为28 d, PM2.5浓度总体呈现出秋冬季节高,春夏季节低,周末PM2.5浓度高于工作日浓度,PM2.5浓度日变化大致呈现双峰型分布,分别出现在09:00左右和23:00至翌日01:00.除相对湿度和冬季气温外,其余气象要素与PM2.5浓度在四季均表现为负相关.影响太原市区PM2.5浓度升高的污染源主要位于其NE-ENE-E方向,西北部地区的相对不明显.汛期当达到中雨(降水量≥10 mm)以上级别的降水都对PM2.5浓度降低有明... 相似文献
14.
城市生活垃圾理化性质的动态特性分析 总被引:5,自引:0,他引:5
对太原市城市生活垃圾的组成、化学元素及重金属等进行了1年(每月2次)共24次的分析。结果表明,太原市生活垃圾的组成在焚烧过程中,能产生低位热值(Q低)的有机物占(44.28±2.24)%,不产生低位热值的无机物占(13.94±2.01)%,混合物(破碎的动植物碎片及粘附在其上面的灰、土、砂)占(43.36±8.67)%。垃圾中可燃物比例较高,水分含量较低,有利于焚烧和热解,低位热值(Q低)平均值为(5590.8±1252.3)kJ/kg,但低位热值随季节变化较大。垃圾中化学元素硫(S)、氯(Cl)、氮(N)、氢(H)、碳(C)、氧(O)的年平均值分别为(0.20±0.13)%、(0.48±0.11)%、(0.87±0.18)%、(2.56±0.76)%、(30.78±4.06)%、(16.42±5.17)%,与其他城市相比,S、N、Cl的含量较高。垃圾中的重金属铅(Pb)、镉(Cd)的年平均值分别为41.94mg/Kg和1.806mg/kg;汞(Hg)含量变化较大。焚烧后的灰渣中,Pb部分挥发,Cd得到富集,但几乎无Hg检出。 相似文献
15.
16.
杭州市大气超细颗粒数浓度谱季节性特征 总被引:4,自引:5,他引:4
利用快速迁移率粒径谱仪(fast mobility particle sizer,FMPS)对杭州市大气超细颗粒进行监测,并对杭州市2011~2012年大气超细颗粒物的数浓度、粒径分布的季节变化及其与气象之间的关系进行研究.结果表明,杭州市超细颗粒数浓度呈对数双峰分布,季节变化特征为冬季>夏季>春季>秋季,12月值最高,为3.56×104cm-3,10月最低,为2.51×104cm-3.CMD(count medium diameter)季节变化特征为春>冬>秋>夏,4月最高,为53.51 nm;6月最低,为16.68 nm.气象因素对超细颗粒数浓度有一定影响. 相似文献
17.
随着我国工业化和城镇化的深入推进,人们对城市大气环境质量关注日益增加。连续五年对山西省太原市5个点位进行监测,考察降水中主要离子时间变异及大气干湿沉降规律。结果表明:太原市五个监测点年均干沉降量排序为太钢工业区坞城(东)桃园(市中)晋祠(景区)上兰(市郊),其中太钢年均沉降量是上兰的三倍。降尘量除了在不同点位差异较大外,相同点上不同季节也有较大波动,表现为各监测点春季和冬季降尘量为全年最高。而夏季由于降雨较多,干沉降最少。总体上,近五年各点干沉降量呈现逐年下降的趋势。湿沉降方面以桃园为市区代表分析,SO_4~(2-)、NO_3~-、Ca~(2+)和NH_4~+是太原市桃园降水中主要的无机离子,其加权平均浓度范围为3.1~19 mg/L,各离子浓度在干燥的冬春季较高,且近五年其浓度及沉降量快速增加。桃园降雨中SO_4~(2-)和NO_3~-仍然是最主要的致酸离子,SO_4~(2-)年均沉降量分别是NO_3~-、Ca~(2+)和NH_4~+的1.7、3.9、5.9倍。Ca~(2+)、NH_4~+和Mg~(2+)的中和因子分别是0.42、0.30、0.14,说明Ca~(2+)、NH_4~+对酸雨缓冲作用大于Mg~(2+)。2013~2017年太原市桃园降雨SO_4~(2-)/NO_3~-和NH_4~+/NO_3~-比值分别为1.7和0.3,表明酸雨类型由硫酸型向混合型发展,主要是近年来NO_3~-浓度增幅大于SO_4~(2-)和NH_4~+。总的来看,近些年太原市政府大力提倡节能减排带来明显效果,但工业厂矿区周边降尘污染依然严重,属于今后城市环境治理的重点。 相似文献
18.