首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Argillaceous formations are thought to be suitable natural barriers to the release of radionuclides from a radioactive waste repository. However, the safety assessment of a waste repository hosted by an argillaceous rock requires knowledge of several properties of the host rock such as the hydraulic conductivity, diffusion properties and the pore water composition. This paper presents an experimental design that allows the determination of these three types of parameters on the same cylindrical rock sample. The reliability of this method was evaluated using a core sample from a well-investigated indurated argillaceous formation, the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL) (Switzerland). In this test, deuterium- and oxygen-18-depleted water, bromide and caesium were injected as tracer pulses in a reservoir drilled in the centre of a cylindrical core sample. The evolution of these tracers was monitored by means of samplers included in a circulation circuit for a period of 204 days. Then, a hydraulic test (pulse-test type) was performed. Finally, the core sample was dismantled and analysed to determine tracer profiles. Diffusion parameters determined for the four tracers are consistent with those previously obtained from laboratory through-diffusion and in-situ diffusion experiments. The reconstructed initial pore-water composition (chloride and water stable-isotope concentrations) was also consistent with those previously reported. In addition, the hydraulic test led to an estimate of hydraulic conductivity in good agreement with that obtained from in-situ tests.  相似文献   

2.
Lopes I  Ribeiro R 《Chemosphere》2005,61(10):1505-1511
Sediment toxicity can be assessed by conducting pore-water toxicity assays with standard water column organisms. Several methods have been developed for sampling pore-water. Centrifugation and pressurization methods are recommended when large volumes of pore-water are required to perform toxicity assays. Nevertheless, these methods involve sediment transportation and storage in laboratory, which can alter sediment toxicity. Therefore, an extraction method for large volumes that could be employed in the field site would be highly desirable. This study aimed to optimize and further evaluate an existing sediment pressurizing device with low construction costs, easy to carry and operate in the field, and presenting minimal chemical reactivity. The latter characteristic was achieved by lining the device interior with Teflon, by using large pore filters (50 microm), and by using an inert gas (nitrogen). Pore-water extraction efficiency and the toxicities of pore-water samples obtained by pressurization and by refrigerated centrifugation were compared. An artificial sediment (70% sand, 20% kaolin and 10% alpha-cellulose) spiked with an alcohol (phenol), a surfactant (SDS), a metal (copper), an organophosphate pesticide (parathion), and a natural sediment contaminated with acid mine drainage, were assayed for toxicity using Microtox assays. Sediment pressurization was found to be as efficient to extract pore-water as centrifugation, being more cost effective and adequate for field use.  相似文献   

3.
Simultaneous measurements of individual hydrocarbons and individual carbonyls were carried out at a downtown Los Angeles location. Concentrations are presented for 50 compounds in morning air samples. While paraffins (C ≥ 4) were a major hydrocarbon subclass on a ppmC basis, higher aromatics (C ≥ 8) were the major component when taking reactivity considerations into account. Comparison of the results with emission inventory data showed good agreement for many hydrocarbons and for paraffins as a subclass. Measured olefins and aromatics concentrations were substantially lower and higher, respectively, than those expected from inventory data.  相似文献   

4.
This paper presents an analytical model to describe pulse injection experiments. This model solves the advection-diffusion equation while taking into account back diffusion from the clay core to the inlet and from the outlet to the clay core. In most analytical models, back diffusion is neglected. For sufficiently high Péclet numbers, this is a good approximation. However, in experiments where the Péclet number is low, back diffusion is important and must be taken into account. An additional advantage of the present model is that both concentration and flux are conserved at the inlet and at the outlet of the clay core. This model is used to fit pulse injection experiments with iodide and tritiated water (HTO) in clay cores. The (new) model is required for fitting the experimental results since in clay layers advection is very slow leading to a low Péclet number. The experiments are performed on clay cores taken from different depths from the Boom Clay and the Ypres Clay layer under the site of the nuclear power plant of Doel (Belgium). The quality of all fits is excellent and the obtained parameter values are coherent. For HTO, the fitted value for the diffusion accessible porosity is consistent with measurements of the water content in Ypres Clay cores. In both types of clays, the apparent diffusion coefficient at zero flow is between 10(-10) and 2 x 10(-10) m(2)/s for iodide and between 2 x 10(-10) and 3 x 10(-10) m(2)/s for HTO. The dispersion length is in the order of 10(-3) m. The average value for the diffusion accessible porosity is between 0.35 and 0.4 for HTO and between 0.2 and 0.25 for iodide.  相似文献   

5.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

6.
Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming trapped.  相似文献   

7.
Recent years have seen considerable improvement in water quality standards (QS) for metals by taking account of the effect of local water chemistry conditions on their bioavailability. We describe preliminary efforts to further refine water quality standards, by taking account of the composition of the local ecological community (the ultimate protection objective) in addition to bioavailability. Relevance of QS to the local ecological community is critical as it is important to minimise instances where quality classification using QS does not reconcile with a quality classification based on an assessment of the composition of the local ecology (e.g. using benthic macroinvertebrate quality assessment metrics such as River InVertebrate Prediction and Classification System (RIVPACS)), particularly where ecology is assessed to be at good or better status, whilst chemical quality is determined to be failing relevant standards. The alternative approach outlined here describes a method to derive a site-specific species sensitivity distribution (SSD) based on the ecological community which is expected to be present at the site in the absence of anthropogenic pressures (reference conditions). The method combines a conventional laboratory ecotoxicity dataset normalised for bioavailability with field measurements of the response of benthic macroinvertebrate abundance to chemical exposure. Site-specific QSref are then derived from the 5%ile of this SSD. Using this method, site QSref have been derived for zinc in an area impacted by historic mining activities. Application of QSref can result in greater agreement between chemical and ecological metrics of environmental quality compared with the use of either conventional (QScon) or bioavailability-based QS (QSbio). In addition to zinc, the approach is likely to be applicable to other metals and possibly other types of chemical stressors (e.g. pesticides). However, the methodology for deriving site-specific targets requires additional development and validation before they can be robustly applied during surface water classification.  相似文献   

8.
In this paper a method is developed which can be used to estimate the body burden of organic hydrophobic chemicals in earthworms. In contrast to the equilibrium partitioning theory, two routes of uptake are incorporated: uptake from interstitial water and dietary uptake. Although many uncertainties still remain, calculations show that for earthworms steady state body burdens are mainly determined by uptake from interstitial water. Under most circumstances, the contribution of dietary uptake is small, except for hydrophobic chemicals (log Kow > 5) in soils with a high organic matter (OM) content of ≈ 20 %. Under those conditions, estimates of the steady state body burden calculated with the equilibrium partitioning model, in which only uptake from interstitial water is taken into account, might result in a small underestimation of the real body burden of chemicals in earthworms.  相似文献   

9.
Yilmaz M  Gül A  Karaköse E 《Chemosphere》2004,56(4):375-380
In this study 96-h LC50 value of cadmium chloride (CdCl2 . H2O), a metal salt widely used in industry, was determined for the guppy (Poecilia reticulata, Pallas, 1859). The experiments were planned in four series of a total of 440 guppies employing the static test method of acute toxicity. 10 fish were placed in each replicate of each dose. The experiments were performed as four replicates, and behavioral changes in the guppy were determined for each cadmium chloride metal salt concentration. The data obtained were statistically evaluated by the use of EPA computer program based on Finney's Probit Analysis Method and a 96-h LC50 value for P. reticulata was found to be 30.4 mg/l in a static bioassay test system. This value was estimated to be 30.6 mg/l with Behrens-Karber's method. The two methods were in good agreement. 95% lower and upper confidence limits for the LC50 were 29.3 and 31.7 mg/l, respectively. The water temperature was kept between 21 and 23 degrees C. The behavioral changes observed in fish were, swimming in imbalanced manner, capsizing, attaching to the surface, difficulty in breathing and gathering around the ventilation filter.  相似文献   

10.
A long-term single borehole diffusion experiment using tritiated water as tracer was carried out in Opalinus clay, an argillaceous rock formation that is accessible at the Mont Terri Underground Research Laboratory, situated in the Swiss Jura. The tracer was diluted in reconstituted formation water and introduced into a packed-off section of a borehole located in saturated rock. Pressure in this interval was maintained equal to the pore pressure of the surrounding rock in order to prevent any hydraulic gradient around the borehole and to avoid advective transport processes. The evolution of the tracer concentration in the injection system was monitored over time. After 1 year of diffusion, the claystone surrounding the interval was retrieved by overcoring the whole borehole and packer system, and by an adjacent oblique borehole. Compressed air was used as drilling fluid to reduce rock disturbances. The recovered overcore was sampled along profiles perpendicular to the borehole wall with a view to determining the tracer-concentration profiles in the rock. To avoid further evaporation of tritiated water, subsamples were immediately transferred into polyethylene bottles and disaggregated by adding a known amount of tracer-free water. Fifteen profiles were determined and showed a decreasing tracer concentration with distance into the rock. The pore-water contents were constant along those profiles, confirming that only very little water was lost during overcoring operations. The evolution of tritium-tracer concentration in the injection system over time and in situ profiles were interpreted with a 3-D numerical simulation of the experiment. That allowed for the identification of the transport parameters (orthotropic diffusion tensor and porosity) by minimising the relative quadratic error between the experimental and simulated data. The fitting is good and the results are consistent with data obtained on drill-core samples. The result of tritiated water is discussed regarding (1) the potential effect of mechanical and/or chemical disturbances around the injection borehole and (2) the specific behaviour of tritiated water.  相似文献   

11.
Seven types of apparatus have been used to measure the quantum yields for direct phototransformation in water of 4 chemicals (pentachlorophenol; 2,4-dichlorophenol; 3,4-dichloroaniline; 4-nitrophenol) under polychromatic (12 laboratories) and monochromatic (3 laboratories) light, according to a common test protocol. The results with both types of light were in good agreement. The reproducibility and accuracy of quantum yields obtained with the ECETOC/University of Clermont-Ferrand apparatus with polychromatic light (6 laboratories) were similar to or better than those obtained with monochromatic light. A disadvantage of the method with polychromatic light is that the calculation is more complicated, but this can be overcome by the use of a desk-top computer. On the other hand experiments with polychromatic light permit the determination of quantum yields of substances of low photoreactivity.  相似文献   

12.
The effects of pore-water velocity, solute hydrophobicity, and sorbent organic-carbon content on sorption nonequilibrium during solute transport were evaluated. Nonequilibrium transport was observed to increase with pore-water velocity, solute hydrophobicity, and sorbent organic-carbon content. Nonequilibrium transport of neutral organic compounds was not detected with low organic-carbon (TOC = 0.33 g kg−1) aquifer material, but was detected on higher organic sorbents from the unsaturated zone (TOC = 2.6 g kg−1) and the soil surface (TOC = 6.9 g kg−1). For solute-sorbent combinations yielding retardation factors > 2, nonequilibrium during transport was observed. After experimentally accounting for slow solute diffusion in the aqueous phase and isotherm nonlinearity as potential contributors to nonequilibrium solute transport, sorption nonequilibrium was attributed to slow solute diffusion within the organic-carbon matrix.  相似文献   

13.
A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time.  相似文献   

14.
Human intake due to pesticide residues in food commodities can be much higher than those related to water consumption and air inhalation, stressing the importance to correctly estimate pesticide uptake into plants and predict subsequent intake by humans. We calculated the human intake fraction of captan via tomato consumption taking into account the time between pesticide application and harvest, the time between harvest and consumption, the absorption of spray deposit on plant surfaces, transfer properties through the cuticle, degradation inside the plant and loss due to food processing. Human population intake fractions due to ingestion were calculated for complete, washed and peeled tomatoes. The calculated intake fractions were compared with measurements derived from an experimental setup in a Mediterranean greenhouse. The fraction of captan applied in the greenhouse as plant treatment that eventually is ingested by the human population is on average 10(-2)-10(-5), depending on the time between pesticide application and ingestion of tomatoes and the processing step considered. Model and experimentally derived intake fractions deviated less than a factor of 2 for complete and washed tomatoes and a factor of 3 for peeled tomatoes. Intake fractions due to air inhalation and consumption of drinking water are expected to be significantly lower (5-9 orders of magnitude) than those induced by the intake of tomatoes in this case study.  相似文献   

15.
In natural environment, marine organisms are concomitantly exposed to pollutants and multiple disease agents resulting in detrimental interactions. The present study evaluated interactive effects of metal contamination (cadmium) and pathogenic organisms (trematode parasites Himasthla elongata and pathogenic bacteria Vibrio tapetis) singularly and in combination on the bivalve Ruditapes philippinarum, an introduced species to Europe, under laboratory controlled conditions. After 7 days, metal bioaccumulation and pathogen load were analyzed as well as metallothionein (MT) response and hemocyte concentrations and activities. Results showed that infection by opportunistic pathogens affects metal accumulation, leading to maximal Cd accumulation in co-infected clams. Among stressors only V. tapetis induced significant effects on immune parameters whereas a particular interaction “trematode-bacteria” was shown on MT responses. Despite low trematode infection in agreement with the resistant status of R. philippinarum to these macroparasites, significant interaction with bacteria and metal occurred. Such results highlight the necessity of taking pathogens into account in ecotoxicological studies.  相似文献   

16.
The mass size distribution of atmospheric aerosol particles was determined by means of an electric low pressure impactor (ELPI) in rural air in Hungary. The particles captured on different stages of the impactor were chemically analyzed by capillary zone electrophoresis to quantify ionic components as well as by catalytic combustion method to detect total carbon in the samples. The results show that fine aerosol consists mainly of ammonium sulfate and organic carbon. These two species have rather different size distributions since very small particles are composed almost of carbon compounds. The analysis of fine aerosol samples collected simultaneously on filters indicates that an important part of organics is soluble in water. The mass balance of fine particles as a function of their size is estimated by taking into account the liquid water adsorbed by ammonium sulfate and by converting the mass of carbon to the mass of carbon compounds. Finally, the size resolved mass balance of fine aerosol particles is presented and discussed as a function of the origin of air masses.  相似文献   

17.
The aim of the study is to assess the evolving mine water quality of closed uranium mines (abandoned between 1958 and 1992) in the Czech Republic. This paper focuses on the changes in mine water quality over time and spatial variability. In 2010, systematic monitoring of mine water quality was performed at all available locations of previous uranium exploitation. Gravity flow discharges (mine adits, uncontrolled discharges) or shafts (in dynamic state or stagnating) were sampled. Since the quality of mine water results from multiple conditions—geology, type of sample, sampling depth, time since mine flooding, an assessment of mine water quality evolution was done taking into account all these conditions. Multivariate analyses were applied in order to identify the groups of samples based on their similarity. Evaluation of hydrogeochemical equilibrium and evolution of mine waters was done using the Geochemist’s Workbench and PHREEQC software. The sampling proved that uranium concentrations in mine waters did not predominantly exceed 0.45 mg/L. In case of discharges from old adits abandoned more than 40 years ago, uranium concentrations were below the MCL of US Environmental Protection Agency for uranium in drinking water (0.03 mg/L). Higher concentrations, up to 1.23 mg/L of U, were found only at active dewatered mines. Activity concentration of 226Ra varied from 0.03 up to 1.85 Bq/L except for two sites with increased background values due to rock formation (granites). Radium has a typically increasing trend after mine abandonment with a large variability. Concerning metals in mine water, Al, Co and Ni exceeded legislative limits on two sites with low pH waters. The mine water quality changes with a focus on uranium mobility were described from recently dewatered mines to shafts with water level maintained in order to prevent outflows to surface water and finally to stagnating shafts and discharges of mine water from old adits. The results were in good agreement with published experience on mine water stratification, its disturbance by pumping or natural water decant and the “first flush” phenomenon after mine flooding.  相似文献   

18.
The vadose zone is the intermediate medium between the atmosphere and groundwater. The modeling of the processes taking place in the vadose zone needs different approaches to those needed for groundwater transport problems because of the marked changes in environmental conditions affecting the vadose zone. A mathematical model to simulate the water flow, and the fate and transport of recalcitrant contaminants was developed, which could be applied to various bioremediation methods such as phytoremediation and natural attenuation in the vadose zone. Two-phase flow equations and heat flux models were used to develop the model. Surface energy, balance equations were used to estimate soil surface temperature, and root growth and root distribution models were incorporated to represent the special contribution of plant mots in the vegetated soils. Interactions between the roots and environmental conditions such as temperature and water content were treated by incorporating a feedback mechanism that made allowance for the effects of water and temperature stresses on root distribution and water uptake by roots. In conducting the modeling study, Johnson grass and unplanted soil were simulated to compare the effect of root water uptake on soil water content. After the numerical experiments were conducted to investigate model behavior, the proposed model was applied to estimate actual water flow and heat flow in field lysimeter experiments over a 1-year period. Root growth and distribution for Johnson grass and rye grass were simulated to compare the warm season grass to the cold season grass. A significant agreement was observed between the simulations and measured data.  相似文献   

19.
Several previously reported laboratory studies related to transport of solutes through packed columns were utilized to develop predictive relationships for mass-transfer rate coefficient. The data were classified into two groups: those obtained under rate-limited mass transfer between mobile and immobile water regions (physical nonequilibrium conditions), and those derived from rate-limited mass transfer between instantaneous and slow sorption sites (sorption nonequilibrium conditions). The mass-transfer coefficient in all these studies was obtained by fitting breakthrough data to a transport model employing a first-order rate limitations with a "constant" mass-transfer coefficient, independent of flow conditions. This study demonstrated that the mass-transfer coefficient in these models is dependent on system parameters including pore-water velocity, length-scale, retardation coefficient, and particle or aggregate size. Predictive relationships were developed, through regression analysis, relating mass-transfer coefficient to residence time. The developed relationships adequately estimated previously reported field mass-transfer values. Successful simulations of field desorption data reported by Bahr [J. Contam. Hydrol. 4 (1989) 205] further demonstrate the potential applicability of the developed relationships.  相似文献   

20.
In the Ellen catchment on the Pinjarra Plain, NE of Perth in Western Australia, cadmium from fertilisers is starting to leach from soils. About 70% of surface soils in the Ellen catchment are sandy and often on top of a shallow ephemeral water table. Adsorption of Cd in the sandy soils of the Ellen catchment was studied by batch adsorption and by leaching small columns of soil. Adsorption of Cd increases linearly with increasing soil organic matter content and exponentially with increasing pH. Cadmium is significantly mobilised in the sandy soils by dissolved organic matter.The capacity of most of the sandy soils in the Ellen catchment to adsorb phosphate from fertiliser has been saturated. Resulting concentrations in Ellen Brook average 500 μg L−1 P. Cadmium is adsorbed more strongly in the sandy soils than phosphate and is just starting to leach into Ellen Brook. From a comparison of Cd/P ratios in water, soils and fertiliser, cadmium concentrations in Ellen Brook are estimated to be at 10–30% of their maximum for complete breakthrough from soils. Present concentrations of Cd in Ellen Brook average 0.1 μg L−1 and are estimated to approach the maximum for complete breakthrough in 100 yr. Maximum Cd concentrations in Ellen Brook could range from 0.6 to 2 μg L−1, depending on rates of input with fertiliser and future increases in agricultural land use in the catchment.Breakthrough curves, resulting from leaching Cd through small columns of sandy soil, indicate that adsorption significantly increases the effective hydrodynamic dispersion of Cd. Longitudinal dispersivities, measured at pore-water velocities of 0.7–14 m day−1, were 5 cm for Cd and 0.1–0.2 cm for chloride. The much greater dispersion of Cd in the sandy soils than of chloride is shown not to be caused by non-equilibrium adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号