首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A snow cover can modify when, to what extent, and in what form atmospherically deposited mercury is released to the underlying surface media and/or back to the atmosphere. Investigations of mercury transport and transformation processes in snow packs are hampered by the difficulty in controlling experimental and melt conditions and due to the huge variability in the composition and physical structure of environmental snow packs. A method was developed that allows the detailed mechanistic investigation of mercury fate in snow that is made, aged and melted under controlled laboratory conditions. A number of control samples established that mercury in indoor air, scavenged during the snow making process, constitutes the dominant source of mercury in the artificial snow. No addition of mercury is required. The amount of mercury in fresh snow was quantitatively (102 and 106% in two experiments) recovered in the dissolved and particulate fractions of the melt water and the vessel head space, confirming a mass balance for mercury and the absence of unquantifiable mercury sources and sinks in the experimental system. In snow made from unmodified tap water, more than half of the mercury present in the snowpack was recovered from the bottom of the snow vessel after all of the snow had melted. Such late elution is indicative of mercury being mostly associated with particles that are filtered by, and retained in, the shrinking snowpack. Addition of salt to the snow-making water at an environmentally realistic pH notably shifted the distribution of mercury in the snowpack from the particulate to the dissolved phase, resulting in more than 60% of the mercury eluting in the dissolved phase of early melt water fractions.  相似文献   

2.
Concentrations of dissolved and particle-associated n-alkanes, phthalates and polycyclic aromatic hydrocarbons (PAHs) were measured in sea surface microlayer (SML) and sub-surface water (SSL) samples collected in the coastal area of Terra Nova Bay, Antarctica, during the Austral spring 1998/1999. SML concentrations of the selected organic compounds were higher than SSL values and the enrichment factors were greater in the particulate phase than in the dissolved phase. During the same campaign, "fresh" snow samples, collected at different altitudes (from sea level up to 2670 m) near the coast on Mt Melbourne, immediately after a snowy event, were analysed in order to provide more information on air/sea exchange processes. The same classes of organic compounds found in sea water were also present in "fresh" snow samples. The surfactant fluorescent organic matter (SFOM), adsorbed on the microdrop aerosol surface, could be considered the main constituent of the enrichment and the carrier at higher altitudes of organic compounds. In fact, hydrocarbons (n-alkanes and PAHs), which are not surfactants like phthalates, could interact with SFOM and follow the same fate.  相似文献   

3.
The physico-chemical behaviour of iron and manganese has been observed during many surveys covering various hydrodynamic conditions in the Seine river estuary system. The results obtained confirm the non-conservative behaviour of these two metals. Generally, dissolved iron exhibits non-conservative removal and shows a rapid decrease in low salinity; it is moved from fresh waters with high concentrations to saline waters with very low concentrations. This can be attributed to the flocculation processes as confirmed by laboratory experiments. Dissolved manganese versus salinity curves exhibit a peak concentration in the low salinity zone. Laboratory mixing experiments have been undertaken comparing iron and manganese adsorption/desorption from suspended material versus salinity, using a series of water samples collected in the up-river and marine regions in order to assess the importance of particulate material and salinity on iron and manganese distributions. The salinity was controlled by varying the marine to fresh water ratio. The reaction kinetics aspect is developed in more detail for manganese in the last series of remobilization experiments starting from a stock of suspended particles collected in the upstream river site (Caudebec) in mixtures of waters, according to time and salinity. This study has allowed us to show that iron and manganese behaviour in the Seine estuary is strongly influenced: (i) by the high turbidity zone and by the presence of calcium carbonate which could stabilise the Mn(II) form; and (ii) by the increase of salinity, calcium, magnesium and suspended matter concentrations and by complex formation.  相似文献   

4.
Significance of carbon cycling in polar ecosystems is well recognized. Yet, bacteria in surface snow have received less attention in terms of their potential in carbon cycling. Here, we present results on carbon utilization by bacterial communities in three surface snow samples from Antarctica collected along a coastal to inland transect. Microcosm studies were conducted over 8 days at 5?±?1°C to study carbon metabolism in different combinations of added low molecular weight (LMW (glucose, <1 kDa)) and high molecular weight (HMW (starch, >1 kDa)) substrates (final 20 ppm). The total organic carbon (TOC) in the snow samples decreased with time at rates ranging from non-detectable to 1.4 ppm day(-1) with rates highest in snow samples from inland region. In addition, carbon utilization studies were also carried out with bacterial isolates LH1, LH2, and LH4 belonging to the genus Cellulosimicrobium, Bacillus, and Ralstonia, respectively, isolated from the snow samples. Studies with strain LH2 in different amendments of glucose and starch showed that TOC decreased with time in all amendments at a rate of 0.9-1.5 ppm day(-1) with highest rates of 1.4-1.5 ppm day(-1) in amendments containing a higher proportion of starch. The bacterial isolates were also studied to determine their ability to utilize other LMW and HMW compounds. They utilized diverse substrates like carbohydrates, amino acids, amines, amides, complex polymers, etc., of molecular mass <100 Da, 100-500 Da, >500 Da-1 kDa, and >1 kDa preferring (up to 31 times) substrates with mass of >1 kDa than <1 kDa. The ability of bacteria in snow to utilize diverse LMW and HMW substrates indicates that they could be important in the uptake of similar compounds in snow and therefore potentially govern snow chemistry.  相似文献   

5.
Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.  相似文献   

6.
Adopting recently developed clean laboratory techniques, antimony (Sb) and scandium (Sc) deposition were measured in a 63.72 m-long ice core (1842-1996) and a 5 m deep snow pit (1994-2004) collected on Devon Island, Canadian High Arctic. Antimony concentrations ranged from 0.07 to 108 pg g(-1) with a median of 0.98 pg g(-1)(N= 510). Scandium, used as a conservative reference element, revealed that dust inputs were effectively constant during the last 160 years. The atmospheric Sb signal preserved in the ice core reflects contamination from industrialisation, the economic boom which followed WWII, as well as the comparatively recent introduction of flue gas filter technologies and emission reduction efforts. Natural contributions to the total Sb inventory are negligible, meaning that anthropogenic emissions have dominated atmospheric Sb deposition throughout the entire period. The seasonal resolution of the snow pit showed that aerosols deposited during the Arctic winter, when air masses are derived mainly from Eurasia, show the greatest Sb concentrations. Deposition during summer, when air masses come mainly from North America, is still enriched in Sb, but less so. Snow and ice provide unambiguous evidence that enrichments of Sb in Arctic air have increased 50% during the past three decades, with two-thirds being deposited during winter. Most Sb is produced in Asia, primarily from Sb sulfides such as stibnite (Sb2S3), but also as a by-product of lead and copper smelting. In addition there is a growing worldwide use of Sb in automobile brake pads, plastics and flame retardants. In contrast to Pb which has gone into decline during the same interval because of the gradual elimination of gasoline lead additives, the enrichments of Sb have been increasing and today clearly exceed those of Pb. Given that the toxicity of Sb is comparable to that of Pb, Sb has now replaced Pb in the rank of potentially toxic trace metals in the Arctic atmosphere.  相似文献   

7.
The behaviour of the three organophosphate esters tributyl phosphate (TBP), tris(2-chloroethyl)phosphate (TCEP) and tris(2-butoxyethyl)phosphate (TBEP) during infiltration of river water to ground water has been investigated. The monitoring site is the Oder River and the adjacent Oderbruch aquifer. From March 2000 to July 2001, 76 ground water samples from monitoring wells located close to the Oder River and nine river water samples were collected. Additionally, influent and effluent samples from local waste water treatment plants, one sample of rain water and samples of roof runoff were collected. All samples were analysed by solid-phase-extraction followed by gas chromatography/mass spectrometry. TBP, TCEP and TBEP were detected at mean values of 622 ng l(-1), 352 ng l(-1), and 2955 ng l(-1), respectively in municipal waste water effluents. This points to a major input of these compounds into the Oder River by municipal waste water discharge. The concentrations of TBP and TBEP decreased downstream the Oder River possibly due to aerobic degradation. TBP, TCEP and TBEP were detected in ground water influenced predominantly by bank-filtered water. This demonstrates a transport of organic compounds by river water infiltration to ground water. TBP, TCEP and TBEP were also detected in rain water precipitation, roof runoff and ground water predominantly influenced by rain water infiltration. This hints to an input of these compounds to ground water by dry and wet deposition after atmospheric transport. Organophosphate esters were also detected in parts of the aquifer at 21 m depth. This demonstrates low anaerobic degradation rates of TBP, TCEP and TBEP.  相似文献   

8.
Using ICP-SMS and the clean lab methods and procedures developed for determining trace element concentrations in polar snow and ice, a lower limit of detection (LOD) of 30 pg l(-1) for Sb and 5 pg l(-1) for Sc was achieved, allowing the natural abundances of Sb and Sc to be measured in pristine groundwaters. Water samples were collected from natural flows and wells between Elmvale and Wyevale in Springwater Township, Ontario, Canada. The water in this region is derived from chemical reactions between meteoric fluids and the Quaternary sediments which cover the bedrock (dolomitic limestone) to depths of more than 100 m. The chemical composition of these waters (pH 8) is primarily a reflection of reactions between the percolating fluids with calcite and dolomite. The maximum concentration of Sb was 5.0 ng l(-1), and the average of all samples collected was 2.2 +/- 1.2 ng l(-1) (n = 34). The average concentration of Sc was 8.6 +/- 4.7 ng l(-1) (n = 28). The paucity of published Sb concentration data available for comparison is probably because most of the analytical methods commonly used to date, including GFAAS, HG-AAS, HG-AFS, INAA, and ICP-QMS, have lower limits of detection which are inadequate for reliably determining the natural abundance of Sb in many uncontaminated groundwaters. Also, the measurement of extremely low concentrations of Sb requires extra care to avoid possible contamination. Given the extensive use of Sb in plastics, we show that some of the containers used to collect and store samples, and for handling and preparing samples for chemical analyses, may be important sources of contamination in the laboratory. The Sb and Sc concentrations reported here should serve as reference values for this region, against which contamination by various human impacts in future could be compared.  相似文献   

9.
Lead levels in wet and dry deposition were determined within this project. A network of 10 sampling stations was established. The stations were located in areas characterized by heavy traffic volumes, but away from industrial and/or municipal pollution sources. It was assumed, therefore, that lead in the samples collected was coming primarily from automobile emissions. Measurements were carried out over a period of one year. Both rain and snow samples were collected. Lead concentrations in the samples ranged from 0.6 to 141 microg dm(-3). They depended on street topography, traffic volume, average speed of the vehicles, frequency of traffic congestion and atmospheric conditions. The highest lead levels in deposition were observed during the cold season.  相似文献   

10.
BGIA has organised round robins for the analysis of samples of inorganic acids in workplace air for a number of years. Test samples of the volatile acids HCl and HNO(3) are collected from a standard atmosphere and samples of the non-volatile acids H(3)PO(4) and H(2)SO(4) are prepared by spiking filters with acid solution. The last two round robins have also covered the sampling of volatile acids, with up to 15 "active" participants able to visit the test facility in Dresden and take samples themselves. For other "passive" participants, BGIA takes samples from the same atmosphere. The acid concentrations generated lie between 0,1 and 1 times the German limit values for HCl and HNO(3). The results for the last round robin showed no significant difference between the performance of the "active" and "passive" participants. The participant means were in good agreement with the theoretical concentrations and the quality control measurements. For "active" participants RSDs were between 7% and 14% and for all participants between 8% and 16%. The round robin for the non-volatile acids showed similar results. The participant means were again in excellent agreement with the quality control measurements and RSDs were between 12% and 15%. The BGIA round robins have demonstrated the proficiency of laboratories measuring exposure to inorganic acids in air. However, concerns remain about the performance of published methods. It has shown that the sampling efficiency of sorbent tubes falls off with increasing particle size and hence silica gel tube methods may give low results for acid mists. Another issue with silica gel tubes is that a substantial proportion of the sample can be collected on the glass wool plugs that retain the sorbent. This can be up to 50% for HCl and 100% for HNO(3). Hence, low results may be obtained if the glass wool plugs are discarded. Similarly, methods for volatile inorganic acids that use a pre-filter to remove particulates usually overlook the fact that the acids can react with co-particulate matter on the pre-filter. Low recoveries in the range 30%-50% have been found when sampling HCl through filters loaded with potential interferents. Finally, particulate salts interfere with filter sampling methods for non-volatile inorganic acids. A two-part International Standard is in preparation for inorganic acids by ion chromatography and the issues discussed above are being taken into consideration during its development.  相似文献   

11.
Snow can be involved in the acquisition, transport, storage and release of atmospheric impurities. Because it can store impurities for periods of time ranging from hours to millenia, it provides a medium for monitoring atmospheric impurities for a wide range of time scales.In most climates, snow is involved in the precipitation process. It can acquire atmospheric impurities either as aerosols or as gases. The aereosols can be included in the body of the snow crystals or adhered to their surfaces. Gases may be included in bubbles, particularly in the case of rime, or adsorbed on the ice surfaces. The amount of ice surface in a small storm is about 1010 m2.Snow on the ground can store the impurities acquired in the precipitation process and can acquire additional impurities as dry deposition. The low temperatures and the fact that ice is a solid reduces biological activity and rates of inorganic reactions. However, the assumption that there is no activity in the winter is not well found. Exchange is possible between different layers of the snow and between the snow and the atmosphere, resulting in relocation of gases and aerosols. These processes also insure that the impurities reside on the exterior surfaces of the ice particles that form the snowpack. Biological activity is possible near the ground-snow interface in most climates.The seasonal snowpack releases its impurities when it melts. Because below freezing processes relocate any internal impurities to the ice surfaces within the snowpack, the impurities are available to the first melt water. Pulses of both acidic and alkalinic impurities have been observed with the initial snow melt water. However, the monitoring of such pulses is difficult and the measurements are inconsistent.Impurities are incorporated for longer periods of time in perennial snowpacks and finally in ice fields. These can be glaciers, or, at the largest scale, continental ice sheets. Coring such ice is expensive but provides data on atmospheric composition and climate for periods of time up to millenia. Such data are not available from other sources.Not all the problems associated with using snow as an environmental monitor have been resolved. In general, a good qualitative understanding is available but in many cases basic, quantitative data on the processes are not available. Work is in progress to acquire such data.Contribution from Fourth World Wilderness Congress—Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

12.
To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.  相似文献   

13.
Two statistical methods for the analysis of data on the evolution of the chemical composition of cold snow (<0°C) in the field (Lac Laflamme, Quebec) were compared. The methods used on the data were regression analysis (One sample per sampling date over a long cold period) and ANOVA (replicate samples on a restricted number of sampling dates over shorter periods). The relative power of the tests to determine the detectable amplitude of chemical changes was derived from the theoretical power of the tests under comparable conditions of sampling (number of observations) and from the estimated error variances of the measured data.The results of the study on the evolution of sulfates (SO4) concentrations in discretely identified snow strate clearly showed that for six of the eight strata, significant losses of SO4 occurred in snow during cold periods. The relative amplitude of the significant losses varied between 1% per day and 4% per day depending on the initial concentrations in the snow and the prevailing meteorological conditions.The analysis of the data also demonstrated that for the same number of samples, the regression analysis is more efficient in detecting the chemical changes in snow than the alternative ANOVA method. The use of this information to plan sampling programs of cold snow under both field and laboratory conditions is discussed.  相似文献   

14.
The lack of high quality measurements of Hg and trace elements in cloud and fog water led to the design of a new collector for clean sequential sampling of cloud and fog water. Cloud water was collected during nine non-precipitating cloud events on Mt. Mansfield, VT in the northeastern USA between August 1 and October 31, 1998. Sequential samples were collected during six of these events. Mercury cloud water concentrations ranged from 7.5 to 71.8 ng l(-1), with a mean of 24.8 ng l(-1). Liquid water content explained about 60% of the variability in Hg cloud concentrations. Highest Hg cloud water concentrations were found to be associated with transport from the Mid-Atlantic and Ohio River Valley, and lowest concentrations with transport from the north of Mt. Mansfield out of Canada. Twenty-nine event precipitation samples were collected during the ten-week cloud sampling period near the base of Mt. Mansfield as part of a long-term deposition study. The Hg concentrations of cloud water were similar to, but higher on average (median of 12.5 ng l(-1)) than Hg precipitation concentrations (median of 10.5 ng l(-1)). Cloud and precipitation samples were analyzed for fifteen trace elements including Mg, Cu, Zn, As, Cd and Pb by ICP-MS. Mean concentrations were higher in cloud water than precipitation for elements with predominately anthropogenic, but not crustal origin in samples from the same source region. One possible explanation is greater in-cloud scavenging of crustal elements in precipitating than non-precipitating clouds, and greater below-cloud scavenging of crustal than anthropogenic aerosols.  相似文献   

15.
This study evaluated the relationship between the breath concentrations of, and personal exposure to, toluene, xylene and ethylbenzene of thirty workers from ten gasoline stations. Personal exposure air samples and workplace samples were collected simultaneously. Each subject provided a sample of exhaled breath after his or her personal exposure air was sampled. Twenty-five personal air, 17 workplace and 30 breath samples were collected in this study. Results indicated that breath concentrations of toluene and xylene were significantly correlated with personal monitoring concentrations. Furthermore, multiple regression analysis showed that exhaled toluene levels were highly influenced by personal toluene concentrations and the amount of personal gasoline sold (r2 = 0.762), while exhaled xylene levels depended on wind speed and personal xylene exposure concentrations (r2 = 0.665). Exhaled ethylbenzene levels were too low to present a relationship between concentrations and personal exposure levels. The exhaled toluene, xylene and ethylbenzene concentrations ranged from 4.3 to 41.8, 0.9 to 13.9, and 0.2 to 6.5 ppb, and the corresponding personal monitoring concentrations ranged from 60.3 to 572.3, 16.4 to 156.6, and 10.7 to 136.6, respectively. The average number of symptoms per person, according to neurotoxic questionnaire 16 (abbreviated as Q16) was 4.1 and six workers showed over six symptoms in Q16. This study suggests that exhaled toluene and xylene levels are suitable for use as biological exposure indices even at the ppb-level of exposure. Gasoline service workers are exposed to high levels of volatile organic compounds (VOCs) and the potential threats to their neurological systems deserve further investigation.  相似文献   

16.
The anions chloride, sulfate and nitrate in nearly 500 pairs of ice core samples from the same depth were determined in a 121 m long ice core from Svalbard. The analyses were performed separately using an ion chromatograph with Dionex AS9 and AS15 columns with Na(2)CO(3) and NaOH eluents. Results showed a small (5-6 microg l(-1)) but statistically significant difference in mean concentrations for chloride and sulfate but not for nitrate. 2% of the data indicate real differences in concentrations across the ice core. Despite these differences ion information in ice core layers are comparable for ice core paleoclimate and environmental studies even though analyses are made using two different procedures.  相似文献   

17.
Ni and V have been determined in snow and ice collected at a high altitude location (Col du D?me) near the summit of Mont Blanc on the French-Italian border; dated from the 1960s and 1990s. Ni and V were simultaneously determined by inductively coupled plasma sector field mass spectrometry. Measured concentrations range from 6 to 700 pg g(-1) and 4 to 1,100 pg g(-1) for Ni and V, respectively. The results show pronounced seasonal variations in the concentrations of both metals, with high concentration values in summer layers and much lower values for winter layers. These seasonal variations are linked especially with the existence of inversion layers during winter months. Ni and V concentrations in excess of the contributions from rock and soil dust (Ni(excess), V(excess)) appear to be mainly associated with anthropogenic inputs, with pronounced seasonal variations. Large variations in the V(excess)/Ni(excess) ratio are observed, with a higher ratio in summer than in winter. This shows differences in anthropogenic inputs at Col du D?me during the different parts of the year. The above ratio was compared with the corresponding ratios for oil combustion from stationary sources and the exhaust from gasoline and diesel engines. It appears that Ni and V concentrations at Col du D?me are probably the result of changing combinations of contributions from oil combustion for power generation, industrial and residential uses, on one side, and automobile and truck traffic, on the other side, with possibly a significant contribution from Ni smelters in Russia during winter months.  相似文献   

18.
This paper records the concentrations of major and trace elements determined from snow samples collected during a comprehensive survey undertaken in the Scottish Highlands during the winter and spring period of 1987. The configuration of calculated back-trajectories allowed the samples to be categorized into one of five geographical sectors. Discriminant analysis was used to check the validity of these calculations, to isolate potentially deviant samples, and to predict the possible source of one sample whose back-trajectory could not be computed with confidence. Limitations of the statistical method are discussed, but we conclude that the technique justifies more use by environmental scientists involved in the evaluation of data.  相似文献   

19.
Aerosol particle samples (PM10) were collected at urban, industrial and rural sites located in Rio de Janeiro, Brazil, between October 2008 and September 2009. Aerosol samples for each site were analyzed for total and soluble metals, water-soluble ions, carboxylic acids, and water-soluble organic carbon (WSOC). The results showed that the mean PM10 concentrations were 34 μg m(-3); 47 μg m(-3) and 71 μg m(-3) at the rural, urban and industrial sites, respectively. An increase in the average concentration of these particles due to air stagnation was observed during the period from May to September for all sites, and an increase in hospitalization for respiratory problems was also reported. On average, the anions species represented 4 to 14% of total content, while cations species corresponded to 1 to 11% and 7.5% for WSOC. The overall metal content at the industrial site was nearly the double that at the rural site. The concentrations of the studied species are influenced mainly by site location and the specific characteristics present at each site. However, higher concentrations of some species were observed on particular dates and were probably due to biomass burning and African dust events. The acid/aqueous percentiles showed that the most efficiently extracted metals from the aqueous phase were V and Ni (40%), while Al and Fe represented a lower percentage (<3%). Analysis of the aqueous fraction provides important information about the bioavailability of metals that is associated with the inflammatory process in the lungs.  相似文献   

20.
Perchlorate is known to competitively interfere with iodide uptake by the thyroid gland and thereby human exposure to perchlorate is a public health concern. Prevalence of perchlorate in dairy milk is documented; nevertheless, co-occurrence of perchlorate with other thyroid-binding monovalent ions such as iodide and nitrate is not well understood. In this study, we analyzed perchlorate, iodide, and nitrate-N in dairy milk, water and other dairy-related samples collected from Japan and Sri Lanka. Concentrations of perchlorate in Japanese dairy milk samples ranged from 1.03 to 14.1 ng ml(-1); the corresponding concentrations in dairy milk and powdered milk from Sri Lanka were 1.14-38.5 ng ml(-1). Perchlorate concentrations in commercial milk were significantly higher in Japan than in Sri Lanka, while iodide and nitrate levels in milk between the two countries were comparable. All three ions were ubiquitously found in water samples from Japan and Sri Lanka. Analysis of colostrum and raw milk collected from cows fed with the same feed for over 30 days showed no significant temporal variations in perchlorate, iodide and nitrate-N concentrations. A significant positive correlation was found between the concentrations of perchlorate and iodide in Japanese commercial milk. The concentrations of perchlorate and nitrate-N in water samples analyzed from both countries also showed a significant positive correlation. The exposure estimation revealed that dairy milk provides a greater source for perchlorate and iodide, while water predominantly contributes nitrate-N intake for all age groups in both counties. Infants and children demonstrated the highest estimated perchlorate, iodide and nitrate-N intake on a body weight basis in comparison to other age groups. Therefore, further studies of risk associated with perchlorate may need to reconsider co-existence of iodine and other iodide transport inhibitors in food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号