首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Concentrations of 48 elements in the ground growing mosses Hylocomium splendens and Pleurozium schreberi have been compared with wet deposition data for the same elements at 13 Norwegian sites. Significant positive correlations were found for V, Fe, Co, As, Y, Mo, Cd, Sb, Ce, Sm, Er, Tl and Pb in Hylocomium splendens, and for Mg, V, Fe, Co, As, Se, Y, Mo, Cd, Sb, Tl and Pb in Pleurozium schreberi. Regression equations for transforming moss concentration data to absolute deposition rates have been calculated for those of the above elements which are of interest from a pollution point of view. The concentration levels of Li, Be, Mg, Ca, Zn, Ge, As, Se, Sr, Y, Zr, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Ho, Yb, Hf, Ta and U were similar in the two moss species. Hylocomium splendens had highest concentrations of Cr, Fe, Co, Ni, Cu, Ga, Nb, Mo, Sb, Eu, Gd, Tb, Dy, Er, Tm, Lu, W, Tl, Pb and Th, whereas V, Mn, Rb and Cd were highest in Pleurozium schreberi. No variations were observed in the concentrations of the studied elements during the sampling season.  相似文献   

2.
The aim of the study was to compare accumulation efficiency of Al, Ba and nutritional elements (Ca, Fe, K, Mg, Mn, Na) exhibited by six edible mushrooms collected in particular regions of Poland during the last 20 years. The studied mushroom species were Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus and Xerocomus badius. The highest and the lowest concentrations of the elements in tested mushroom species were 11 – 410, 34 – 337, 16785 – 34600, 140 – 607, 12 – 75 and 16 – 143 mg kg?1d.m., respectively. The highest average concentrations of Al, Mg and Mn were observed in Suillus luteus fruiting bodies, while for Ba, Ca, K and Na it was in Lactarius deliciosus. BCF >1 was found for K and Mg in all tested mushroom species and additionally for the highest Ca and Na concentrations of all tested mushroom species except for C. cibarius and S. luteus, respectively. For the other tested elements (Al, Ba, Fe and Mn) BCF values < 1 were recorded.  相似文献   

3.
Surface snow samples have been analyzed for a total of 37 elements including Na, Mg, Al, K, Ca, Fe, Ba, Cd, Fe, Cd, Cr, Cu, Ga, Li, Mn, Pb, Se, Sr, V, Zn, As, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Th by inductively coupled plasma mass spectroscopy (ICP-MS). Rare earth elements in surface snow were evaluated after preconcentration of the samples in a class 1000 clean room. These samples were collected between 1991–1993 during the oversnow traverses along a 2200 km route in East Queen Maud Land, Antarctica. They include one at Dome Fuji Station (77°32′S, 24°08′E; 3810 m a.s.l.) built on the top of the second highest dome. In coastal area, fallout flux for Na, Mg, Sr and Cu or more weakly for Ca and Ba shows an apparent decrease according to the distance from the coast. On the other hand, fallout flux for Co, Ni and Cd shows an increase at 2500–3000 m or >3500 m above sea level. For Mn, Se, Zn and As, it shows a combined pattern of these two types. For Al, V and Pb, a constant profile with an intermittent peaks along this route was indicated. These geographical distributions of fallout flux for each element could reflect polar stratospheric precipitation or long-range tropospheric transport from the southern hemisphere. In the present study, concentrations of rare earth elements in Antarctic surface snow at sub-ppt level are first reported. A clear rare earth pattern is noticed in the Antarctic samples and rare earth ratios are also valuable to estimate anthropogenic emissions to the Antarctica.  相似文献   

4.

It has been known since the 1970s that differences exist in the profile of element content in wild-growing mushroom species, although knowledge of the role of mushroom species/families as determinants in the accumulation of diverse element remains limited. The aim of this study was to determine the content of 63 mineral elements, divided into six separate groups in the fruit bodies of 17 wild-growing mushroom species. The mushrooms, growing in widely ranging types of soil composition, were collected in Poland in 2018. Lepista nuda and Paralepista gilva contained not only the highest content of essential major (531 and 14,800 mg kg−1, respectively of Ca and P) and trace elements (425 and 66.3 mg kg−1, respectively of Fe and B) but also a high content of trace elements with a detrimental health effect (1.39 and 7.29 mg kg−1, respectively of Tl and Ba). A high content of several elements (Al, B, Ba, Bi, Ca, Er, Fe, Mg, Mo, P, Sc, Ti or V) in L. nuda, Lepista personata, P. gilva and/or Tricholoma equestre fruit bodies belonging to the Tricholomataceae family suggests that such species may be characterised by the most effective accumulation of selected major or trace elements. On the other hand, mushrooms belonging to the Agaricaceae family (Agaricus arvensis, Coprinus comatus and Macrolepiota procera) were characterised by significant differences in the content of all determined elements jointly, which suggests that a higher content of one or several elements is mushroom species-dependent.

Graphical abstract

  相似文献   

5.
Mature specimens of Parasol Mushroom were collected annually in the outskirts of the Siemiany (2000–2003) and Rafa (2001–2003) sites in the northern part of Poland to examine temporal variations and similarities in the composition of 20 chemical elements. Analysis was done under the same condition and using well-validated analytical methods. Elements were determined by inductively coupled plasma–atomic emission spectroscopy and cold vapour–atomic absorption spectroscopy (Hg). The ranges of Ag, Al, Ba, Ca, Cd, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn concentrations in the caps of fruiting bodies were similar (p > 0.05; Mann-Whitney U test) for both geographically distant sites, and these specimens from Rafa were more contaminated with Pb (p < 0.05; Mann-Whitney U test). The annual collections of caps in the Siemiany site varied in Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na, Rb and Sr and contents (0.05 < p < 0.001), while they were similar in Cr, K, Mg, Mn, Ni, P, Pb and Zn (p > 0.05; Mann-Whitney U test). The annual collections of specimens from the Rafa site varied in contents of Ag, Al, Ba, Ca, Fe, Hg, K, Mg, Mn, P, Rb and Zn (p > 0.05), while they were similar in Cd, Co, Cr, Cu, Na, Ni, Pb and Sr (p < 0.05). The results of this study imply that metallic elements content of Parasol Mushroom collected at the same undisrupted sites, and hence keeping the same geochemical condition for mushroom development and fructification (the same stands and probably the same mycelia), can fluctuate over the years or the life-span of mycelium. Hence, when assessing the nutritional value of essential metallic elements and status of non-essential or toxic metallic elements in Parasol's Mushroom caps (and probably also of other mushrooms species) to man, the possible fluctuation in contents over time have to be taken into account.  相似文献   

6.
Fungi can effectively accumulate various metallic elements, metalloids and non-metals in fruiting bodies. This study provides information on the accumulation of Ag, As, Ba, Cd, Co, Cs, Cu, Cr, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn in the edible mushroom Sarcodon imbricatus (L.) P. Karst. using the technique of inductively coupled plasma – mass spectrometry with a dynamic reaction cell mode. Mushrooms were foraged from four regions in Poland. Baseline concentrations of minerals, expressed in mg kg?1 dry biomass (db), were in the composite samples of caps in the range: for Ag (0.27–0.29), As (1.0–1.9), Ba (0.31–0.45), Cd (4.5–6.3), Co (0.23–1.9), Cu (28–35), Cr (0.19–0.29), Cs (20–38), Li (0.013–0.020), Mn (5.9–8.8), Ni (0.81–1.4), Pb (0.94–1.6), Rb (490–700), Sr (0.14–0.19), Tl (0.058–0.11), U (0.002–0.002), V (0.044–0.054) and Zn (140–160). Concentration levels of Ag, As, Cd, Cs, Pb and Zn were higher in caps than in stipes of S. imbricatus, whereas for other elements the distribution between caps and stipes was nearly equal or for some differed depending on the location. Certainly, the content of toxic Cd in S. imbricatus was elevated (0.45–0.63 mg kg?1 in fresh caps) and therefore eating this mushroom could increase exposure to Cd. In addition, the content of toxic As in S. imbricatus was elevated.  相似文献   

7.
Cui  Limeng  Wu  Zhuona  Han  Peng  Taira  Yasuyuki  Wang  Huan  Meng  Qinghua  Feng  Zechen  Zhai  Shuguang  Yu  Jun  Zhu  Weijie  Kong  Yuxia  Wang  Hongfang  Zhang  Hong  Bai  Bin  Lou  Yun  Ma  Yongzhong 《Environmental science and pollution research international》2020,27(7):7005-7014

The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 μg/m3, with a median of 133.97 μg/m3. The order for the mean concentrations of heavy metals, known as hazardous air pollutants (HAPs), was as follows: Mn > Pb > As > Cr > Ni > Se > Cd > Co > Sb > Hg > Be; Non-Designated HAPs Metals: Ca > Fe > Mg > Al > K > Na > Zn > P > Ba > Ti > Cu > Sr > B > Sn > I > V > Rb > Ce > Mo > Cs > Th > Ag > U > Pt. The median concentration of As was higher than China air quality standard (6 ng/m3). The gross α and β concentration levels in aerosols were (1.84?±?1.59) mBg/m3 and (1.15?±?0.85) mBg/m3, respectively. The enrichment factor values of Cu, Ba, B, Ce, Tl, Cs, Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and Ag were higher than 10, which indicated enriched results from anthropogenic sources. Pb, As, and Cd are considered to originate from multiple sources; fireworks released Ba during China spring festival; Fe, Ce, and Cs may come from stable emissions such as industrial gases. The health risks from anthropogenic metals via inhalation, ingestion, and dermal pathway were estimated on the basis of health quotient as well as the results indicated that children faced the higher risk than adults during the research period. For adults, the health risk posed by heavy metals in atmospheric particles was below the acceptable level.

  相似文献   

8.
Abstract

The content of Al, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Ni, Rb, Se, Sr, and Zn in fruiting bodies of edible mushrooms Calocybe gambosa, Entoloma clypeatum, Entoloma saepium, Xerocomellus chrysenteron, and Amanita rubescens growing in an orchard planted with fruit trees and situated close to a high-grown forest was studied during years 2016–2018. A. rubescens showed the highest potential of the element accumulation with bioconcentration factors of 48.5, 16.2, 7.80, 6.53, 1.75, and 1.68 obtained for Rb, Cd, Cu, Zn, Sr, and Mg, respectively. Both Entoloma species accumulated the elements similarly with bioconcentration factors >1.0 obtained for Rb, Cu, Cd, and Mg. Bioconcentration factors <0.05 were obtained for Al, Cr, Fe, and Pb in all studied species. The contents of beryllium (<0.1?mg/kg dry matter) were always the lowest among the studied elements. The contents of some elements of studied mushroom species significantly fluctuated over the years. Despite the fact that some studied elements (As, Be, Cd, Pb, Ni) are considerably toxic for humans, the pronounced effect on health is not expected if the studied mushroom species are consumed occasionally and do not represent the main component of the diet.  相似文献   

9.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

10.
Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates.  相似文献   

11.
Abstract

Analysis of inorganic and organic contaminants in foodstuffs aids in understanding the human exposure to these compounds via consumption. In this study, an edible mushroom species (Leccinum scabrum) and top soil samples were analysed for essential and toxic substances including phosphorus and inorganic elements over a period of three fruiting seasons. Analysis of silver (Ag), aluminium (Al), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), rubidium (Rb), strontium (Sr) and zinc (Zn) in mushrooms and topsoil were performed using inductively coupled plasma optical emission spectroscopy (ICP-OES) with ultrasonic cross flow nebulizer. Total mercury was determined by cold-vapour atomic absorption spectroscopy (CV-AAS). The results exhibited wide variation in concentrations of metals between soil and mushroom (cap and stipes) during three fruiting seasons. Positive bioconcentration factors (BFCs) indicate on bioaccumulation of several metals including, Cd, Cu, Hg, K, Mg, Na, P, Rb and Zn in caps and stipes of fruitbodies of this mushroom, while other metals such as Al, Ba, Ca, Co, Fe, Mn, Ni, Pb and Sr were not exhibiting significant positive BFCs. Over a period studied, the caps were characterised by different (p?<?0.05) concentrations of Al, Co, Cu, Hg, Mn, Ni, P, Pb and Sr. Contamination profiles, temporal fluctuations, BCFs should be taken into consideration when assessing the nutritional value of this mushroom.  相似文献   

12.
Leccinum scabrum is an edible mushroom common in European regions in the northern hemisphere. Macro and trace mineral constituents such as Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, P, Rb, Sr and Zn were studied in L. scabrum and in the top soil collected from the same location underneath soil substratum. The “pseudo-total” and labile (extractable fraction of minerals) were measured to get insight into the levels, distribution between the morphological parts of fruiting bodies, potential for their bioconcentration by mushroom and evaluated for human exposure via consumption of the mushroom. The sampling sites include the Dar?lubska Wilderness, Trójmiejski Landscape Park, Sobieszewo Island, Wdzydze Landscape Park and outskirts of the K?trzyn town in Mazury from the norther part of Poland. Median values of K, Rb and P concentrations in dehydrated L. scabrum were for caps in range 27,000–44,000 mg kg?1, 90–320 mg kg?1 and 6,200–9,100 mg kg?1, and followed by Mg at 880–1,000 mg kg?1, Ca at 48–210 mg kg?1 and Al at 15–120 mg kg?1. The median concentrations of Cu, Fe, Mn and Zn in caps were in range 15–27 mg kg?1 db 38–140 mg kg?1, 5.3–27 mg kg?1 and 130–270 mg kg?1. For Ba and Sr, concentrations on the average were at ~1 mg kg?1, and almost equally distributed between the caps and stipes of the fruiting bodies. L. scabrum mushrooms were low in toxic Ag, Cd, Hg and Pb, for which the median values in dried caps from five locations were, respectively, in range 0.48–0.98 mg kg?1 (cap to stipe index, QC/S, was 2.5–4.1), 1.0–5.8 mg kg?1 (QC/S 2.9–3.8), 0.36–0.59 mg kg?1 (QC/S 1.6–2.7) and 0.20–0.91 mg kg?1 (QC/S 1.2–1.9). Substantial variations in the concentrations of the “pseudo-total” fraction (extracted by aqua regia) or labile fraction (extracted by 20% solution of nitric acid) of the elements determined in forest topsoils were noted between some of the locations examined. The elements K, P, Cd, Cu, Hg, Mn, Na, Rb and Zn can be considered as those which were bioconcentrated by L. scabrum in fruiting bodies, while the rates of accumulation varied with the sampling location.  相似文献   

13.
This study aimed to determine the contents of main mineral elements of wild Boletus edulis and to assess its edible safety, which may provide scientific evidence for the utilization of this species. Fourteen mineral contents (Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Sr, V and Zn) in the caps and stipes of B. edulis as well as the corresponding surface soils collected from nine different geographic regions in Yunnan Province, southwest China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrometer (ICP-AES) after microwave digestion. Measurement data were analyzed using variance and Pearson correlation analysis. Edible safety was evaluated according to the provisionally tolerable weekly intake (PTWI) of heavy metals recommended by United Nations Food and Agriculture Organization and World Health Organization (FAO/WHO). Mineral contents were significantly different with the variance of collection areas. B. edulis showed relative abundant contents of Ca, Fe, Mg and Na, followed by Ba, Cr, Cu, Mn and Zn, and the elements with the lower content less were Cd, Co, Ni, Sr and V. The elements accumulation differed significantly in caps and stipes. Among them, Cd and Zn were bioconcentrated (BCF > 1) while others were bioexcluded (BCF < 1). The mineral contents in B. edulis and its surface soil were positively related, indicating that the elements accumulation level was related to soil background. In addition, from the perspective of food safety, if an adult (60 kg) eats 300 g fresh B. edulis per week, the intake of Cd in most of tested mushrooms were lower than PTWI value whereas the Cd intakes in some other samples were higher than this standard. The results indicated that the main mineral contents in B. edulis were significantly different with respect to geographical distribution, and the Cd intake in a few of regions was higher than the acceptable intakes with a potential risk.  相似文献   

14.

Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg?1), Cr (3.01 mg kg?1), and Cd (2.67 mg kg?1) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg?1) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg?1) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p?<?0.001) between examined saprophytic and ectomycorrhizal mushrooms. Considering anatomical part of the fruiting body (cap-stipe), a considerably higher concentration of the analyzed elements was found in the cap for all mushroom species. According to calculated bioconcentration factors, all the examined species were found to be bioexclusors of Ni, Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation.

  相似文献   

15.
ABSTRACT

Dried sclerotia of Wolfiporia extensa have been used as medicine in Asia from Eastern Han Dynasty, and also used as traditional snack called “fulingjiabing” in Beijing, China. In this paper, 18 macro and trace elements (Ag, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Se, Sr, V, and Zn) in both flesh and peel of Wolfiporia extensa from seven sites of Yunnan province in China were determined by inductively coupled plasma mass spectrometer. The average recovery rates of certified reference materials for GBW10015 (spinach leaves) ranged from 90.5 to 113%, for GBW10028 (citrus leaves) from 92.8 to 106%, and for GBW07603 (bush branch and leaves) from 83.3 to 114.6%. Generally speaking, the concentration of all elements determined was at common level. The results of this survey indicate that mineral compositions in peel were higher than in flesh. In peel, the contents of investigated trace metals in mushroom samples were found to be in the range of 1,660–13,400 µg·g?1 dry matter (dm) for Fe and 29.6–710 µg·g?1 dm for Mn. The mean contents of Cr, Cu, Rb, V, and Zn in peel were between 10 and 20 µg·g?1 dm, followed by As, Co, Li, Ni, Pb, Se, and Sr with mean contents between 1 and 10 µg·g?1 dm, while Ag, Cd, and Cs had mean contents of <1 µg·g?1 dm. In flesh, the concentration of Fe was in the range of 54–900 µg·g?1 dm, and it was 1.5–49 µg·g?1 dm for Mn, followed by Ba, Cu, Rb, and Zn in the range of 1 to 10 µg·g?1 dm, while for Ag, As, Cd, Co, Cr, Cs, Li, Ni, Pb, Se, Sr, and V it was <1 µg·g?1 dm. The concentration of toxic elements, such as As, Cd, and Pb, in both flesh and peel was below the permissible limits of World Health Organization. However, As and Pb contents in peel were higher than the limits permitted in the Chinese Pharmacopoeia. The results of principal component analysis showed that the flesh of Wolfiporia extensa from all the seven sites of the Yunnan province tend to cluster together, most probably because the origin of mineral elements in both flesh and peel is wood substrate (old and dead pine trees).  相似文献   

16.
ABSTRACT

This study was carried out on the accumulation and occurrence of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Rb, Sr and Zn in the mushroom Amanita muscaria and forest topsoil from two lowland sites in the Tuchola Pinewoods in the north-central region and an upland site in the ?wietokrzyskie Mountains in the south-central region of Poland. Topsoil from the upland location showed Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na and Zn at significantly higher concentration levels (pseudo-total fraction and often also the labile or extractable fraction) than at both lowland locations, where topsoil was richer in Mg, and similar in Rb. Amanita muscaria from the upland region differed from individuals collected in the lowland sites by higher concentration levels of Cd, Cu, Hg and Mn in caps. This could be related to higher concentration levels of the metallic elements in topsoil in the upland region. On other side, A. muscaria from the upland site was poorer in Co and Fe in caps, and in Ca, Co, Fe and Sr in stipes. In spite of the differences in content of the geogenic metallic elements in topsoil between the lowland and upland locations, A. muscaria from both regions was able to regulate uptake and accumulation of Ag, Al, Ba, Ca, K, Mg, Na, Rb and Zn, which were at similar concentration levels in caps but not necessarily in stipes.  相似文献   

17.

Size-resolved trace metal concentrations at two background sites were assessed during a 1-year observation campaign, with the measurements performed in parallel at two mountain sites, where Mt. Dinghu (DHS) located in the rural region of Pearl River Delta (PRD) and Mt. Gongga (GGS) located in the Tibetan Plateau region. In total, 15 selected trace elements (Mg, Al, K, V, Mn, Fe, Cu, Zn, As, Mo, Ag, Cd, Ba, Tl, and Pb) in aerosol samples were determined using inductively coupled plasma mass spectrometry (ICPMS). The major metals in these two mountain sites were Fe, K, Mg, and Ca with concentrations ranging between 241 and 1452 ng/m3, 428 and 1351 ng/m3, 334 and 875 ng/m3, and 376 and 870 ng/m3, respectively, while the trace metals with the lowest concentrations were Mo, Ag, Cd, and Tl with concentrations lower than 4 ng/m3 in DHS and 2 ng/m3 in GGS. The pronounced seasonal variability in the trace elements was observed in DHS, with lower concentrations in spring and summer and relatively high in winter and autumn, whereas seasonal variance of trace elements is hardly observed in Mt. Gongga. The size distribution pattern of crustal elements of Al, Mg, K, Ba, and Fe was quite similar in DHS and GGS, which were mainly found in coarse particles peaked at 4.7–5.8 μm. In addition, V, Mo, Ag, and Tl were also concentrated in coarse particles, although the high enrichment factor (EF?>?100) of which suggested anthropogenic origin, whereas trace metals of Cd, Mn, Zn, As, Cu, and Pb concentrated in fine mode particles. Specifically, these trace metals peak at approximately 1.5 μm in DHS, while those in GGS peaked at diameter smaller than 0.3 μm, indicating the responsible for long-range transport from the far urban and industrialized areas. Multivariate receptor model combined with the enrichment factor results demonstrated that the trace elemental components at these two background sites were largely contributed from the fossil fuel combustion (55.4% in DHS and 44.0% in GGS) and industrial emissions factors (20.1% vs. 26.5%), which are associated with long distance transport from the coastal area of Southeast China and the Northwestern India, respectively, as suggested by the backward air mass trajectory analysis. Local sources from soil dust contributed a minor variance for trace elements in DHS (9.7%) and GGS (13.8%), respectively.

  相似文献   

18.
《Chemosphere》2007,66(11):2440-2448
Aerosol samples were collected from Kanazawa, Japan to examine the size distribution of 12 elements and to identify the major sources of anthropogenic elements. Key emission sources were identified and, concentrations contributed from individual sources were estimated as well. Concentrations of elements V, Ca, Cd, Fe, Ba, Mg, Mn, Pb, Sr, Zn, Co and Cu in aerosols were determined with ICP-MS. The results showed that Ca, Mg, Sr, Mn, Co and Fe were mainly associated with coarse particles (>2.1 μm), primarily from natural sources. In contrast, the elements Zn, Ba, Cd, V, Pb and Cu dominated in fine aerosol particles (<2.1 μm), implying that the anthropogenic origin is the dominant source. Results of the factor analysis on elements with high EFCrust values (>10) showed that emissions from waste combustion in incinerators, oil combustion (involving waste oil burning and oil combustion in both incinerators and electricity generation plants), as well as coal combustion in electricity generation plants were major contributors of anthropogenic metals in the ambient atmosphere in Kanazawa. Quantitatively estimated sum of mean concentrations of anthropogenic elements from the key sources were in good agreement with the observed values. Results of this study elucidate the need for making pollution control strategy in this area.  相似文献   

19.
ABSTRACT

Lead (Pb), cadmium (Cd), and mercury (Hg) contents in ten species of edible mushrooms in Trako??an, Croatia were determined. In addition, the similarity between the studied species was determined by cluster analysis. The caps and stipes of the fruiting bodies were analysed separately. The analyses were carried out by inductively coupled plasma - optical emission spectrometry (ICP-OES). The greatest mean lead concentrations of 1.91 and 1.60 mg kg ?1 were determined in caps and stipes of Macrolepiota procera. The greatest mean concentrations of cadmium (3.23 and 2.24 mg kg?1) were determined in caps and stipes of Agaricus campestris and of mercury (2.56 and 2.35 mg kg?1) in Boletus edulis. In terms of the anatomical parts of the fruiting body (cap-stipe), a considerably greater concentration of the analysed elements was found in the cap for all mushroom species. According to calculated bio-concentration factors, all the examined species were found to be bio-accumulators of Cd and Hg. On the basis of the accumulation of the studied metals, great similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation was obtained by cluster analysis.  相似文献   

20.
The goal of this study was to evaluate cadmium and lead accumulation ability of in vitro cultures biomass containing selected edible mushroom species derived from the environment (Laetiporus sulphureus, Imleria badia) and those of commercial origin (Agaricus bisporus). Atomic absorption spectrometry was used to evaluate the content of Cd(II) and Pb(II) on the medium supplemented with Cd(II) or Pb(II), each of them at the same concentration of 5·10?5 M. The highest concentration of Cd(II) ions was determined in the biomass from L. sulphureus in vitro cultures, while the highest concentration of Pb(II) ions was found in the biomass from A. bisporus in vitro cultures. The greatest Cd(II) and Pb(II) accumulation ability in mycelium per dry weight was shown for L. sulphureus. Among the test species, biomass of A. bisporus showed the lowest ability for the bioaccumulation of Cd(II); however, comparable ability for the remediation of Pb(II) was provided by the biomasses from A. bisporus and I. badia in vitro cultures. The results confirm the possibility of using these mushroom species for remediation and indicate the relationship between bioaccumulation of heavy metals and the test species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号