首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The binding site interactions of IHSS humic substances, Suwannee River Humic Acid, Suwannee River Fulvic Acid, Nordic Fulvic Acid, and Aldrich Humic Acid with various metals ions and a herbicide, methyl viologen were investigated using fluorescence emission and synchronous‐scan spectroscopy. The metal ions used were, Fe(III), Cr(III), Cr(VI), Pb(II), Cu(II) and Ni(II). Stern‐Volmer constants, KSV for these quenchers were determined at pH 4 and 8 using an ionic strength of 0.1M. For all four humic substances, and at both pH studied, Fe(III) was found to be the most efficient quencher. Quenching efficiency was found to be 3–10 times higher at pH 8. The bimolecular quenching rate constants were found to exceed the maximum considered for diffusion controlled interactions, and indicate that the fluorophore and quencher are in close physical association. Synchronous‐scan spectra were found to change with pH and provided useful information on binding site interactions between humic substances and these quenchers.  相似文献   

2.
Competitive complexation of metal ions with humic substances   总被引:12,自引:0,他引:12  
Zhou P  Yan H  Gu B 《Chemosphere》2005,58(10):1327-1337
The surface complexation model was applied to simulate the competitive complexation of Ni, Ca and Al with humic substances. The presence of two types of binding sites in humic acid, carboxylic and phenolic functional groups, were assumed at both low and high pH conditions. Potentiometric titrations were used to characterize the intrinsic acidity constants of the two binding sites and their concentrations. It was found that the diffuse-layer model (DLM) could fit the experimental data well under different experimental conditions. Ni and Ca ions strongly compete with each other for reactions with the humic acid but Al showed little influence on the complexation of either Ni or Ca due to its hydrolysis and precipitation at pH approximately 5. The surface complexation constants determined from the mono-element systems were compared with those obtained from the multiple-element system (a mixture of the three metal ions). Results indicate little changes in the intrinsic surface complexation constants. Modeling results also indicate that high concentrations of Ca in the contaminated groundwater could strongly inhibit the complexation of Ni ions whereas an increase in pH and the humic concentration could attenuate such competitive interactions. The present study suggests that the surface complexation model could be useful in predicting interactions of the metal ions with humic substances and potentially aid in the design of remediation strategies for metal-contaminated soil and groundwater.  相似文献   

3.
Zhou H  He Y  Lan Y  Mao J  Chen S 《Chemosphere》2008,72(6):870-874
The removal of Cr(VI) by zero-valent iron (Fe(0)) and the effect of three complex reagents, ethylenediaminetetraacetic acid (EDTA), NaF and 1,10-phenanthroline, on this reaction were investigated using batch reactors at pH values of 4, 5 and 6. The results indicate that the removal of Cr(VI) by Fe(0) is slow at pH 5.0 and that three complex reagents play different roles in the reaction. EDTA and NaF significantly enhance the reaction rate. The zero-order rate constants at pH 5.0 were 5.44 microM min(-1) in the presence of 4mM EDTA and 0.99 micrM min(-1) in the presence of 8 mM NaF, respectively, whereas that of control was only 0.33 micrM min(-1), even at pH=4.0. This enhancement is attributed to the formation of complex compounds between EDTA/NaF and reaction products, such as Cr(III) and Fe(III), which eliminate the precipitates of Cr(III), Fe(III) hydroxides and Cr(x)Fe(1-)(x)(OH)(3) and thus reduce surface passivation of Fe(0). In contrast, 1,10-phenanthroline, a complex reagent for Fe(II), dramatically decreases Cr(VI) reduction by Fe(0). At pH=4.0, the zero-order rate constant in the presence of 1mM of 1,10-phenanthroline was 0.02 micrM min(-1), decreasing by 99.7% and 93.9%, respectively, compared with the results in the presence and absence of EDTA. The results suggest that a pathway of the reduction of Cr(VI) to Cr(III) by Fe(0) may involve dissolution of Fe(0) to produce Fe(II), followed by reduction of Cr(VI) by Fe(II), rather than the direct reaction between Cr(VI) and Fe(0), in which Fe(0) transfers electrons to Cr(VI).  相似文献   

4.
Synchronous-scan fluorescence spectra of Chlorella vulgaris solution   总被引:1,自引:0,他引:1  
Liu X  Tao S  Deng N 《Chemosphere》2005,60(11):1550-1554
The characterization of the Chlorella vulgaris solution was carried out using synchronous-scan spectroscopy. The range of concentration of algae and Fe(III) in aqueous solutions were 5 × 108–8 × 109 cells l−1 and 10–60 μM, respectively. Effective characterization method used was synchronous-scan fluorescence spectroscopy. The wavelength difference (Δλ) of 90 nm was maintained between excitation and emission wavelengths; 90 nm was found to be the best Δλ for effective characterization of Chlorella vulgaris solution with or without quencher species (e.g., Fe(III), humic acid (HA)) for the first time. The peak was observed at about EX 236.6 nm/EM 326.6 nm for synchronous-scan fluorescence spectra. The fluorescence quenching of algae in system of algae–Fe(III)–HA was studied using synchronous-scan spectroscopy for the first time. Fe(III) was clearly the effective quencher. The relationship between I0/I (quenching efficiency) and c (concentration of Fe(III) added) was a linear correlation for the algae solution with Fe(III). Also, Aldrich humic acid was found to be an effective quencher. pH effect on synchronous-scan fluorescence intensity of algal solution with Fe(III) and/or HA was evident.  相似文献   

5.
Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co.  相似文献   

6.
Experiments were conducted to probe the interactions between natural dissolved organic matter (DOM) and two xenobiotics, and to determine how DOM influences their bioavailability. The experimental set-up, using dialysis bags, was designed to expose test organisms to the same constant concentration of free dissolved chemical, while increasing the concentration of the bound-to-DOM fraction. Daphnia magna S. were exposed to pyrene or 2,2',5,5'-tetrachlorobiphenyl in the presence of 0, 1, 2, 5, 10 or 20 mg L(-1) of a reference riverine humic acid (Suwannee River Humic Acid). The physico-chemical parameters were well constrained in the microcosm, demonstrating its potential usefulness. However bioaccumulation by D. magna showed important variability between replicate treatments, sufficient to mask any trends as a function of DOM concentration. The organic-carbon-normalised partition coefficients (K(OC)) ranged from 52000 to 92000 L kg(-1) for pyrene and from 8200 to 89000 L kg(-1) for 2,2',5,5'-tetrachlorobiphenyl, with a marked "concentration effect" for the latter compound.  相似文献   

7.
Condensed organic matter with higher affinity for hydrophobic organic compounds (HOC) is currently held responsible for slow desorption and concomitant lower bioavailabilities of HOC in sediments and soils. In an experiment with Daphnia magna and IHSS Peat Humic Acid (PHA), we showed that the bioconcentration factor (BCF) of 3,3',4,4'-tetrachlorobiphenyl (PCB-77) was directly related to the charge of the humic colloid, as predicted by the metal-humic binding model WHAM. Consistent with the type of binding to the humic acid (counter-ion accumulation vs. specific binding), increasing the concentration of Na+ and Ca2+ ions generated opposite effects on colloid charge and HOC binding by the humic acid. Condensation as a colloidal phenomenon in solution as well as on surfaces needs to be addressed as a contributor to lower bioavailabilities and, possibly, to slower desorption kinetics.  相似文献   

8.
We studied the binding of Cu(II) to humic acids and fulvic acids extracted from two horizons of an ombrotrophic peat bog by metal titration experiments at pH 4.5, 5.0, 5.5, and 6.0 and 0.1 M KNO3 ionic strength. Free metal ion concentrations in solution were measured using an ion selective electrode. The amounts of base required to maintain constant pH conditions were recorded and used to calculate H+/Cu2+ exchange ratios. The amount of Cu(II) bound to the humic fractions was greater than the amount bound to the fulvic fractions and only at the highest concentrations of metal ion the amount of Cu(II) sorbed by both fractions became equal. The proton to metal ion exchange ratios are similar for all humic substances, with values ranging from 1.0 to 2.0, and decreasing with increased pH. The amount of Cu(II) bound is practically independent of the horizon from which the sample was extracted. The results indicate that the humic substances show similar cation binding behaviour, despite the differences in chemical composition. The copper binding data are quantitatively described with the NICA-Donnan model, which allows to characterize only the carboxylic type binding sites. The values of the binding constants are higher for the humic acids than for the fulvic acids.  相似文献   

9.
The effects of Fe(II), Mn(III) and humic substances on the catalyzed ozonation of alachlor, an endocrine disruptor were investigated. Results revealed that small amounts of Fe(II), Mn(II), and humic substances could enhance the ozonation of alachlor, but larger amounts of them would retard the oxidation. These results were successfully identified by an electron paramagnetic resonance (EPR) spectroscopy spin-trapping method that could quantify hydroxyl radicals. The production of hydroxyl radicals was obviously increased with the increasing of Fe(II) concentration, which contributed to enhance ozonation at low concentrations. But the excess Fe(II) consumed some of the radicals when it was added at a higher concentration (1.5 mg/L). However, no obvious radicals were observed when a different amount of Mn(II) was used, and the catalytic ozonation of alachlor by Mn(II) mainly followed the mechanism of "active sites created on the surface of MnO2." The radical pathway was followed when alachlor was ozonated with different concentrations of humic substances because of its radical initiating, promoting, and inhibiting effects.  相似文献   

10.
Kamiya M  Kameyama K 《Chemosphere》2001,45(3):231-235
Selected metal ions having paramagnetic property were found to exert inhibition effects on aquatic photodegradation of organophosphorus pesticides sensitized by humic acids, according to the increasing order of Cr(III) < Co(II) < Mn(II) < Cu(II). Basic factors dominating the metal-ion effects were clarified on the basis of the fluorescence quenching as well as radical scavenging abilities of metal ions complexed with humic acids.  相似文献   

11.
Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.  相似文献   

12.
Metal binding and release by solid humic acids (HAs) in soils and sediments can affect metal mobility and bioavailability. Isotherms for tight binding of Fe(III), Pb(II) and Cu(II) by a solid humic acid at pH2.0 fit the Langmuir binding model. Low pH was chosen to protonate the HA carboxylate groups and avoid metal cation hydrolysis. Binding of Fe(III), Pb(II) and Cu(II) occurs in one detectable step labeled A. Site capacities nu(A) are temperature-independent from 10.0 to 40.0 degrees C and point to binding by charge-neutralization to form solid complexes M(OOC-R)(n)(s), where n appears to be 2 for Pb(II) and 3 for Fe(III). Thermodynamic data pairs (DeltaH(A), DeltaS(A)) for metal binding are linearly correlated with previous data for Ca(II), Co(II) and Mg(II) binding by solid HAs.  相似文献   

13.
A method combining (1 h) algal photosynthesis inhibition tests and tangential-flow ultrafiltration (TFF) technique (cut-off 1 kDa) was used to determine the effect of humic substances (HS) on acute metal toxicity to Pseudokirchneriella subcapitata. Three "standard" HS (soil and peat humic acids and Suwannee River fulvic acids) at two concentrations (1 and 5 mg/l) and two metals (Zn at 390 microg/l and Cd at 200 microg/l) were studied. Toxicity of Cd and Zn to P. subcapitata was significantly (p<0.05) reduced in the presence of humic acids (HA) but not in the presence of Suwannee River fulvic acids (SRFA). Metal partitioning between colloidal (1 microm-1 kDa) and truly dissolved (<1 kDa) fractions was found to match a decrease of metal toxicity in the presence of HA, but not in the presence of SRFA. The results suggested that HA reduced Cd and Zn toxicity in two different ways: (1) HA decrease the amount of free metal ions. Metal-HA complexes are high molecular weight, relatively stable with regard to metal-exchange reactions and consequently the metals were less bioavailable. (2) HA adsorbed onto algal surfaces, shielded the cells from free Cd and Zn ions. Several possible explanations can be postulated to account for the observed SRFA results: (1) Cd- and Zn-SRFA complexes are thought to be labile (i.e. undergo rapid dissociation); (2) SRFA coagulated, presumably during equilibration, and that coagulation altered metal complexing behavior of SRFA; (3) FA has a lower ability to adsorb on cell membranes at pH>7.  相似文献   

14.
Chang Chien SW  Wang MC  Huang CC 《Chemosphere》2006,64(8):1353-1361
Thermodynamic stability constants of the formation of complexes from the reactions of humic substances with various metals are usually used as parameters to judge the reactivities of both humic substances and metals. However, in calculating the thermodynamic stability constants, complicated processes for the acquisition of activities of components in reactions are absolutely inevitable. In this study, we investigated the average conditional concentration quotients of the complexes formed from the reaction of metals with humic substances and the relations of these quotients to thermodynamic stability constants. The characterized humic substances including HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) extracted from a swine compost were prepared to react with Pb, Cu, Cd, and Zn at 25 degrees C and at pH 4.00 and 6.50. Reactions of HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) with the four metals were carried out at 1:0.1, 1:0.5, 1:1, 1:5, and 1:10 ligand:metal stoichiometry. The concentrations of the free ions of Pb, Cu, Cd, and Zn in the reaction systems of metal-HA suspensions and metal-FA solutions were measured by anodic stripping voltammetry (ASV). The sequence of the average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals was FA(MW<1,000)>FA(MW>1,000)>HA(MW>1,000), showing the relative reactivities of the fractions of swine compost-derived humic substances. The sequence of reacting metals with humic substances was Pb>Cu>Cd>Zn, which is in good agreement with the sequence reported by judging the thermodynamic stability constants. The average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals were thus useful parameters that can be directly related to thermodynamic stability constants and other parameters.  相似文献   

15.
Iminodiacetic acid was immobilized on waste paper by chemical modification in order to develop a new type of adsorption gel for heavy metal ions. Adsorption behavior of the gel was investigated for a number of metal ions, specifically Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. From batch adsorption tests, the order of selectivity was found to be as follows: Cu(II)  Fe(III) > Pb(II) > Ni(II)  Co(II) > Cd(II). Column tests were carried out for pairs of metal ions to understand the separation and pre-concentration behavior of the gel. It was found that mutual separation of Ni(II) from Co(II) and that of Pb(II) from Cd(II) can be achieved at pH 3. Similarly, selective separation of Cu(II) from Cu(II)–Fe(III) and Cu(II)–Pb(II) mixtures at pH 1.5 and 2, respectively, was observed by using this new adsorption gel. In all cases, almost complete recovery of the adsorbed metal was confirmed by elution tests with HCl.  相似文献   

16.
Lippold H  Evans ND  Warwick P  Kupsch H 《Chemosphere》2007,67(5):1050-1056
Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio.  相似文献   

17.
Jung Y  Choi J  Lee W 《Chemosphere》2007,68(10):1968-1975
The reduction of Cr(VI) to Cr(III) by magnetite in the presence of added Fe(II) was characterized through batch kinetic experiments and the effect of Fe(II) addition and pH were investigated in this study. The addition of Fe(II) into magnetite suspension improved the reductive capacity of magnetite. Eighty percent of Cr(VI) was reduced by magnetite (6.5 g l(-1)) with Fe(II) (80 mg l(-1)) within 1 h, while 60% of Cr(VI) was removed by magnetite only. However, the extent of improved reductive capacity of magnetite with Fe(II) was less than that predicted by the summation of each reduction capacity of magnetite and Fe(II). The reduction of Cr(VI) in the magnetite suspension with Fe(II) increased with the increase of molar ratio of Fe(II) to Cr(VI) (0.6, 1, 1.5, 2.3) in the range of 0-2.3 and with the decrease of pH in the range of pH 8.0-5.5. The speciation of chromium, iron, and oxygen on the surface of magnetite was investigated by X-ray photoelectron spectroscopy. Cr 2p3/2, Fe 2p3/2, and O 1s peaks were mainly observed at 576.7 and 577.8 eV, at 711.2 eV, and at 530.2 and 531.4 eV, respectively. The results indicates that Cr(III) and Fe(III) were the dominant species on the surface of magnetite after reaction and that the dominant species covered the magnetite surface and formed metal (oxy)hydroxide.  相似文献   

18.
Klavins M  Eglite L  Zicmanis A 《Chemosphere》2006,62(9):1500-1506
A new method was developed for the immobilization of humic substances. Humic acids (HA) immobilized onto different carriers were studied as sorbents for organic and inorganic substances. The sorption isotherms of 4-aminoazobenzene, Crystal Violet, Methylene Green, and flavine mononucleotide on immobilized HA show that pH and salt concentration have a significant effect on the sorption process, largely depending on the properties of polymeric matrix. Humic acids from different sources showed differing sorption capacity for the studied groups of substances.  相似文献   

19.
Natural humic surface water (pH 5.9), ion exchanged samples of the same water (pH 5.5), and aqueous solutions of isolated humic substances at pH 4.5, 5.5 and 6.5, respectively, were ultrafiltered (15°C, 0.5 bar) using hydrophobic polysulfone membranes (GR51) in a cross-flow flat sheet module. The used membrane did not completely retain natural organic matter from the surface water and the addition of complexing metals did not affect the retention any further. The changes which were induced in the membranes during each filtration run were studied by simultaneous streaming potential and flux measurements in 0.01 M KCl solutions. Zeta potentials were calculated based on the streaming potentials and the results showed changes towards more negative values for all the samples due to adsorption of organic matter onto the surface of the membrane pores. Humic acid affected the membrane charges more than fulvic acid. High ionic strength and low pH enhanced flux reduction and fouling. Filtration of natural waters caused more pore plugging and flux reduction than filtration of solutions of the isolated humic substances.  相似文献   

20.
Abstract

The effects of Fe(II), Mn(II) and humic substances on the catalyzed ozonation of alachlor, an endocrine disruptor were investigated. Results revealed that small amounts of Fe(II), Mn(II), and humic substances could enhance the ozonation of alachlor, but larger amounts of them would retard the oxidation. These results were successfully identified by an electron paramagnetic resonance (EPR) spectroscopy/spin-trapping method that could quantify hydroxyl radicals. The production of hydroxyl radicals was obviously increased with the increasing of Fe(II) concentration, which contributed to enhance ozonation at low concentrations. But the excess Fe(II) consumed some of the radicals when it was added at a higher concentration (1.5 mg/L). However, no obvious radicals were observed when a different amount of Mn(II) was used, and the catalytic ozonation of alachlor by Mn(II) mainly followed the mechanism of “active sites created on the surface of MnO2.” The radical pathway was followed when alachlor was ozonated with different concentrations of humic substances because of its radical initiating, promoting, and inhibiting effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号