首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以上海2家大型修造船企业、3家大型汽车制造企业、2家大型涂料生产企业、1家大型油墨生产企业以及1家大型包装印刷企业为例,研究不同监测方法对溶剂使用源有组织排放废气VOCs(挥发性有机物)监测的适用性;并在此基础上初步探讨溶剂使用源排放VOCs的组成特征.结果表明:Summa罐可以很好地采集和储存溶剂使用源排放的有机物,废气在Summa罐采集、储存1周后,其中NMHC(非甲烷总烃)质量浓度与企业现场测试结果一致性很好,二者相关系数高达0.99,平均比值为1.04±0.09.采用GC-FID/MS(气相色谱-氢离子火焰/质谱)联用技术分析Summa罐采集的废气发现,VOCs可定量组分的质量浓度平均值占ρ(NMHC)的61.0%(以碳计);不同溶剂使用源排放的NMHC中可定量组分所占比例在29.2%~95.7%之间,行业之间存在一定差异.溶剂使用源排放的废气中可定量的VOCs组分主要是芳香烃和含氧VOCs;修造船和汽车制造等喷涂过程排放的VOCs中芳香烃贡献最大,其次是含氧VOCs;在涂料油墨生产及包装印刷过程排放的VOCs中,含氧VOCs贡献最大,特别是包装印刷源排放的VOCs中有85.0%是乙酸乙酯.研究结果对溶剂使用源VOCs物质排放清单编制有一定的支撑作用.   相似文献   

2.
VOCs(volatile organic compounds,挥发性有机物)作为臭氧和二次有机气溶胶的关键前体物,已成为工业行业重点控制的大气污染物.源头控制作为工业源VOCs污染防治的重要手段,近5年来得到了快速发展.选取家具制造业、汽车制造业和包装印刷业作为代表性溶剂使用行业,逐生产工序检测、分析溶剂使用企业在使用传统溶剂型溶剂和新型水性溶剂时的VOCs排放特征,定量研究新型低/无VOCs溶剂替代所带来的VOCs污染特征的变化规律,分析并提出溶剂使用源VOCs污染控制对策.结果表明:不同生产工序所排放VOCs的浓度及其各物种贡献率均存在差异,使用新型水性溶剂时,酯类和烷烃为首要VOCs物种,ρ(VOCs)集中在8.77~40.21 mg/m3之间;使用传统溶剂型溶剂时,苯系物和酯类为首要VOCs物种,ρ(VOCs)分布在27.08~2 418.47 mg/m3之间,ρ(VOCs)为使用新型水性溶剂的2.78~50.00倍(以平均质量浓度计),醇类、苯系物、烯烃、酮类、酯类和烷烃的质量浓度分别为使用新型水性溶剂的75.47、19.43、18.27、5.74、5.35和1.20倍.研究显示,源头控制通常需升级配套的生产工艺及设备,但相较于末端控制和过程控制更易管控;水性溶剂替代作为现阶段溶剂使用行业源头控制的主要手段,可有效降低各排污节点的VOCs排放浓度,实现VOCs减排;同时,苯系物和烯烃排放浓度及其排放总量的削减,可降低排放废气的反应活性,从而减少溶剂使用行业二次污染物的生成量.   相似文献   

3.
电子产品加工制造企业挥发性有机物(VOCs)排放特征   总被引:11,自引:4,他引:7  
崔如  马永亮 《环境科学》2013,34(12):4585-4591
根据美国EPA挥发性有机物标准检测法TO-11及TO-14/15,采用VOCs快速检测仪、Summa罐及DNPH吸附管,对我国某大型电子产品加工制造企业中不同工艺环节生产车间内部及生产线最终废气排放管道中VOCs含量水平及组分特征进行检测.结果表明,该企业涉及VOCs排放工艺中压铸车间总挥发性有机物(TVOCs)浓度为0.1~0.5 mg·m-3、机加工车间TVOCs浓度为1.5~2.5 mg·m-3、喷涂车间中TVOCs浓度为20~200 mg·m-3,各车间VOCs组分主要包括烷类、烯炔类、芳香类、酮类、酯类和醚类,共20余种.其中涂装车间内苯系物及酮类物质为主要VOCs组分,各物质浓度分别为苯0.02~0.34 mg·m-3、甲苯0.24~3.35 mg·m-3、乙苯0.04~1.33 mg·m-3、对二甲苯0.13~0.96 mg·m-3、邻/间二甲苯0.02~1.18mg·m-3、丙酮0.29~15.77 mg·m-3、2-丁酮0.06~22.88 mg·m-3、环己酮0.02~25.79 mg·m-3、甲基异丁基甲酮0~21.29mg·m-3.根据该企业生产特征及工艺数据计算,其单条生产线VOCs年排放量为14 t,整个厂区年排放量约为840 t.结合生产流程及生产工艺分析,喷涂过程中的溶剂使用是电子产品加工制造企业的VOCs主要排放来源,废气排放口是重点排放点.  相似文献   

4.
长三角区域人为源活性挥发性有机物高分辨率排放清单   总被引:1,自引:1,他引:0  
基于长三角区域41个城市本地实测,结合美国EPA的SPECIATE 4.4数据库,建立了长三角区域人为源活性挥发性有机物(VOCs)高分辨率排放清单,分析了区域内VOCs的排放特征和组分构成;计算了VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP).结果表明,2017年,长三角区域人为源VOCs排放总量为4.9×106 t,其中工艺过程源、工业溶剂使用源、移动源、生活源、储运源、农业源和废弃物处理源排放贡献分别为:34.3%、27.1%、19.5%、9.7%、6.1%、2.5%和0.4%.芳香烃和烷烃是VOCs的主要种类,均各占长三角VOCs排放总量的25%.工艺过程源、工业溶剂使用源、移动源和生活源OFP贡献率分别为38.3%、21.5%、16.4%和13.2%,SOAP贡献率分别为26.2%、34.1%、18.1%和17.9%,与VOCs排放量的主要贡献源基本一致.各城市VOCs重点排放行业存在较大差异,重点城市群以石化化工和装备制造为主,区域北部则以木材家具等涂装行业为主.计算表明,丙烯、间/对-二甲苯和乙烯是臭氧主要贡献源;甲苯、1,2,...  相似文献   

5.
挥发性有机物(VOCs)是臭氧和二次有机气溶胶的关键前体物,影响空气质量和人体健康。根据武汉市各类挥发性有机物排放源的活动水平数据,采用排放因子法,建立了武汉市2014年人为源挥发性有机物排放清单。结果表明:2014年武汉市人为源挥发性有机物排放总量为163 278.3 t,其不确定性(95%置信区间)为125 561~199 036 t(-23.1%,21.9%);挥发性有机物排放源分为工艺过程源、移动源、溶剂使用源、化石燃料燃烧源和生物质燃烧源5大类,分别占总排放量的47.6%、30.3%、18.7%、1.8%和1.6%;道路机动车、炼焦、石油化工业、建筑涂料使用、非金属矿物制品业、化学原料及化学制品制造业、黑色金属冶炼及压延加工业是挥发性有机物重点排放源;挥发性有机物排放空间分布结果表明,武汉市中心城区人为源挥发性有机物排放强度显著高于远城区。  相似文献   

6.
为更好地掌握北京市电子工业挥发性有机物(VOCs)排放特征及其与其他溶剂使用行业的排放差异,为工业结构调整提供启发和建议,通过实际监测,识别电子工业有组织和无组织VOCs排放水平,采用产污系数法并结合集气效率和去除效率,核算得到2019年北京市电子工业VOCs排放量及各子行业的排放贡献,并与其他典型溶剂使用行业的VOCs排放强度进行了对比.结果表明:电子工业VOCs产生主要集中在光刻、清洗、剥离、显影等环节,使用的有机溶剂主要包括光刻胶、稀释剂、清洗剂和去除剂,分别约占3%、81%、6%和10%,其中约16%以废气形式排入大气.核算得到2019年北京市电子工业VOCs排放量为1 542 t,主要来自显示器件和集成电路行业,分别贡献了71%和18%,与其产量和有机溶剂使用量较大有关,电子专用材料制造和其他行业则分别贡献了3.2%和7.8%.通过与其他典型溶剂使用行业排放强度对比发现,电子工业单位产值VOCs排放强度较低,是家具制造、印刷等传统溶剂使用行业的1/2 750和1/3 250,说明北京市工业结构调整和优化对于减少污染排放具有重要作用.研究显示,可综合城市发展及经济水平,逐步限制发展高排放工业类别,鼓励发展如电子工业等技术密集型和附加值高的行业类别,从而促进城市空气质量的改善.   相似文献   

7.
秦皇岛市工业行业挥发性有机物排放特征   总被引:6,自引:3,他引:3  
虎啸宇  刘航  王乃玉  王灿  揣莹 《环境科学》2018,39(2):543-550
根据2016年收集的秦皇岛全市609家工业企业的产品产量、原料使用量、挥发性有机物(VOCs)排放浓度、排放流量、排放方式等活动水平数据,采用直接测量法和排放因子法建立秦皇岛市工业源VOCs排放清单,结果表明,秦皇岛市全年的工业源VOCs排放总量为8 420.07 t,其中,经济技术开发区为秦皇岛市VOCs排放的主要区域,VOCs排放量为4 120.51 t,占总排放量的48.9%;石油加工、炼焦和核燃料加工业,化学原料和化学制品制造业是秦皇岛重点VOCs排放的主要行业,分别占总排放量的30.35%和14.42%;从VOCs种类分析,不同行业中苯类,脂类与烷烃,酮类相对较多,其他几种成分均含量较少;溶剂使用是VOCs排放环节中的主要环节,排放贡献率达到37%;在调研609家企业中共有109家企业有VOCs控制设施,其中吸附法占比最大,占69%.  相似文献   

8.
江门市人为源挥发性有机物排放清单   总被引:8,自引:7,他引:8  
将江门市人为源挥发性有机物(VOCs)排放分为工业源、移动源、生活源和农业源四大类,以2014年为基准年,根据江门市的统计数据和实地调研结果,采用"自上而下"和"自下而上"结合的排放因子法建立了江门市人为源VOCs排放清单.结果显示江门市2014年人为源VOCs排放总量约为75.09 kt,工业源、移动源、农业源和生活源VOCs排放量为41.37、19.16、11.07和3.50 kt,占比分别为55.09%、25.51%、14.74%和4.65%.工业源中摩托车制造、集装箱制造、涂料、油墨、颜料及类似产品制造、印刷及包装印刷、塑料及橡胶制品、人造革制造、皮革鞣制加工、化石燃料燃烧、基础化学原料制造、电子制造、胶黏剂制造、家具制造等行业的VOCs排放量均超过1 000 t,为江门市重点VOCs排放行业.江门市蓬江区、江海区、鹤山市这3地以工业源排放为主,占比均超过50%,而恩平市、台山市等地则以农业源排放为主.各区和县级市在进行VOCs减排政策制定时要针对本土化的VOCs清单特征,进行精细化管控,才能取得较好减排效果.  相似文献   

9.
印刷电路板(PCB)厂挥发性有机物(VOCs)排放指示物筛选   总被引:5,自引:2,他引:3  
马英歌 《环境科学》2012,33(9):2967-2972
采用VOCs快速测定仪和SUMMA罐采样、GC/MS分析方法,采样分析了上海某工业区3个印刷电路板厂生产车间和废气排放口的VOCs含量水平、组成特征和源成分谱.结果表明,在9月和12月2次采样期间,A、B、H厂生产车间总挥发性有机物(TVOCs)(9月/12月)最高浓度分别为(2.94/2.01)×10-9、(3.18/1.11)×10-6、(0.70/0.18)×10-9;废气排放口TVOCs最高浓度则分别为(0.86/0.90)×10-9、(31.2/12.0)×10-6、(1.24/0.30)×10-9.GC/MS分析结果表明,主要检出了烷烃、烯烃、苯系物、酮类、氯代烷烃、氯代苯类、酯类等7大类共67种VOCs化合物;A、B、H厂生产车间/废气排放口最高检出物和检出浓度分别为:2-丁酮6.73 mg.m-3/2-甲基己烷5.93 mg.m-3、乙酸乙酯8.90 mg.m-3/丙烷9.64 mg.m-3、丙烷2.04 mg.m-3/丙烷1.69 mg.m-3.苯、甲苯、二甲苯检出率均为100%,三厂各点位最高检出浓度/平均浓度分别为0.077 mg.m-3/0.035 mg.m-3、0.56 mg.m-3/0.31 mg.m-3、0.21 mg.m-3/0.12 mg.m-3(间+对-二甲苯)和0.081 mg.m-3/0.050 mg.m-3(邻-二甲苯).源成分谱和PCA分析结果表明,A、B厂的VOCs特征轮廓图谱较相似,特征化合物为苯、甲苯、二甲苯以及丙酮和2-丁酮;H厂主要特征污染物除三苯外,还有氯苯和氯代烷烃类化合物.结合原辅材料及生产工艺分析,溶剂、涂料使用和工艺过程的逸散是生产车间面源VOCs排放的主要来源,废气排放口是VOCs重点排放点源.  相似文献   

10.
为识别武汉市汽修行业涂装工艺环节废气中VOCs(volatile organic compounds,挥发性有机物)浓度水平及组分特征,采集和分析了武汉市10家典型汽修企业喷(烤)漆房治理设施排放环节、喷(烤)漆环节、调漆环节和刮腻子环节共4个环节的含VOCs废气样品.结果表明:①武汉市10家汽修企业喷(烤)漆房治理设施排放环节的VOCs浓度(82.18 mg/m3)最高,其次是调漆环节、喷(烤)漆环节和刮腻子环节,分别为11.37、7.76和5.57 mg/m3.②喷(烤)漆房治理设施排气环节有组织排放以及喷(烤)漆环节与调漆环节无组织排放的VOCs均以OVOCs(oxygenated volatile organic compounds,含氧挥发性有机物)为主,其占比分别为54.4%、50.8%、43.4%;其次为芳香烃,其占比分别为27.0%、22.9%和24.6%;3个环节排放的VOCs物种中质量分数排名前3位的物种均为乙酸丁酯、间/对-二甲苯和1,2-二氯甲烷.刮腻子环节排放的VOCs物种中以芳香烃和OVOCs为主,质量分数排名前3位的物种为苯乙烯、乙酸丁酯和1,2-二氯甲烷.③喷(烤)漆房治理设施排气筒有组织排放以及喷(烤)漆环节、调漆环节无组织排放的VOCs废气中乙酸丁酯含量均远大于苯、甲苯和间/对-二甲苯的含量,且远高于早期武汉市和其他地区的研究结果.研究显示:喷漆(烤)房排气筒有组织排放的VOCs废气浓度最高,应加强对喷漆(烤)房排气筒有组织排放的关注,提高处理设施的“三率”,加强企业喷(烤)漆房的封闭性管理;各环节VOCs废气中乙酸丁酯含量均最高,可考虑将乙酸丁酯作为汽修行业VOCs源示踪物.   相似文献   

11.
不同行业点源产生VOCs气体的特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
在调研552个工业VOCs点源案例的基础上,采用Origin 7.5软件统计分析了不同行业产生VOCs气体的特征. 结果表明:工业点源产生VOCs气体的流量主要分布在103~105m3/h之间;其中,食品制造业,木材加工,印刷业和木、竹、藤、棕、草制品业等产生的VOCs气体流量较高,在104~105 m3/h之间. 各工业点源产生的ρ(TVOC)(VOCs气体质量浓度)主要分布在102~104mg/m3之间;其中,非金属矿物制品业、农副食品加工业、石油加工、炼焦和核燃料加工业、化学原料及化学制品制造业等行业产生的ρ(TVOC)较高,在103~104mg/m3之间. 化学原料及化学制品制造业、医药制造业产生的VOCs种类较多;各行业产生的典型VOCs包括苯类、酯类、醇类、醛类、酮类等. 该研究成果可为相关行业开展点源VOCs污染治理和控制技术选择提供参考依据.   相似文献   

12.
为分析苏州市城区冬季VOCs污染水平、变化特征及污染来源,采用质子转移飞行时间质谱仪(PTR-TOF-MS)进行走航和定点观测.结果表明:①城区中心走航期间总挥发性有机物(TVOC)平均浓度为95.00 μg/m3,环高架快速路走航期间TVOC平均浓度为131.48 μg/m3,定点观测期间TVOC平均浓度为72.85 μg/m3.对比其他城市城区,苏州市城区VOCs污染较轻,环境空气质量处于优良水平(浓度数据基于PTR-TOF-MS所能观测物种).②走航及定点观测期间平均浓度最高的均为含氧挥发性有机物(OVOC),城区中心走航区域OVOC占比为35.83%,环高架快速路走航区域OVOC占比为43.33%,定点观测(处于闹市区)期间OVOC占比为33.36%.③观测期间对OFP贡献较大组分为OVOCs、烯烃、芳香烃.结合无机物种定点观测数据发现,VOCs和NO2的浓度峰值与PM2.5浓度峰值变化趋势一致.结合VOCs浓度呈早晚高峰的日变化规律,判断机动车尾气可能是VOCs、NO2、PM2.5的主要排放源之一.④特征比值法判断观测期间空气老化程度较高,苯系物主要来自交通源和燃料燃烧源.PMF(正矩阵因子分解法)源解析结果表明,VOCs污染源包括溶剂使用源、空气老化和二次形成源、植物源、交通源、工业源,结合非参数风回归模型(NWR)评估污染主要来自定点观测点北方的工业企业以及东南方向的环高架快速行驶的机动车,与走航观测高值点位一致.利用MIR系数法得出5类VOCs来源因子,其OFP贡献率依次为空气老化和二次形成源>溶剂使用源>植物源>交通源>工业源.研究显示,苏州市需加强管控溶剂使用行业的VOCs排放量,倡导在上下班高峰期、周末使用公共交通出行,减少机动车尾气排放,可以有效减少当地O3生成.   相似文献   

13.
分析长治市夏季环境VOCs浓度及其反应活性(以OH·消耗速率计),基于聚类分析与正定矩阵因子分解法 (PMF)解析VOCs来源.结果表明:长治市总VOCs平均浓度为37.40 μg/m3,平均活性水平为5.07s-1,具有本地新鲜排放和反应后混合的特征.机动车排放、燃煤、液化石油气/天然气(LPG/ NG)使用、工艺过程和溶剂使用源对环境VOCs的贡献分别为29.7%、29.2%、23.5%、11.6%和6.1%;对具有新鲜排放特征VOCs的贡献分别为34.6%、38.4%、10.1%、8.5%和8.5%.长治市VOCs主要受本地机动车与燃煤源排放的影响,而LPG/ NG使用源与工艺过程源可通过区域传输影响本地环境VOCs.可见,有效控制本地机动车与燃煤源排放、加强市区周边LPG/NG使用与工艺过程源的联防联控,是降低长治市环境VOCs浓度与O3生成的有效途径.  相似文献   

14.
为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源.结果表明:(1)河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%.(2)空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t.(3)芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104<...  相似文献   

15.
邯郸市秋季大气挥发性有机物污染特征   总被引:12,自引:1,他引:11       下载免费PDF全文
大气中VOCs(volatile organic compounds,挥发性有机物)是形成O3和二次有机气溶胶的重要前体物.通过对2017年10月1-31日邯郸市秋季环境空气中56种VOCs污染物进行在线监测,结合PM2.5、O3、NOx等污染物质量浓度和气象数据,分析了邯郸市VOCs质量浓度水平、时间变化特征、化学反应活性和主要来源.结果表明:邯郸市ρ(VOCs)变化范围较大,为49.1~358.4 μg/m3,平均值为(102.2±45.8)μg/m3,VOCs的主要组分为烷烃和芳烃.ρ(VOCs)与ρ(PM2.5)、ρ(NOx)均有很强的相关性,相关系数分别为0.8和0.7;而ρ(NOx)与ρ(O3)呈明显的负相关性,相关系数为-0.7.邯郸市VOCs中各类组分化学反应活性大小依次为烯烃>芳烃>烷烃>炔烃,并且国庆期间(10月1-7日)VOCs化学反应活性小于非国庆期间(10月8-31日),烯烃和芳烃对O3的产生占主导地位.应用主因子分析法对邯郸市VOCs来源进行解析发现,溶剂使用和燃料挥发源、汽油车排放源、工业源、柴油车排放源和燃烧源是VOCs的主要来源,其方差贡献率分别为36.7%、15.5%、8.0%、6.6%、5.1%.研究显示,减少邯郸市大气中ρ(VOCs)应以控制溶剂使用和燃料挥发源、交通排放源(汽油车排放源和柴油车排放源)为主.   相似文献   

16.
北京市城区春季大气挥发性有机物污染特征   总被引:11,自引:1,他引:10       下载免费PDF全文
"2+26"城市联防联控措施的实施及北京市产业结构的调整,使得北京市大气中VOCs(volatile organic compounds,挥发性有机物)质量浓度、组成特征及来源发生了变化.运用AirmoVOC(GC-866)在线自动监测仪对2017年3-5月北京市城区大气中的VOCs进行观测.结果表明:①北京市城区春季大气中ρ(TVOCs)(TVOCs为总挥发性有机物)为34.36 μg/m3,ρ(烷烃)、ρ(芳香烃)、ρ(烯烃)、ρ(炔烃)分别占ρ(TVOCs)的57.13%、33.18%、7.54%、2.15%.质量浓度最高的前3位VOCs物种分别为苯、丙烷和乙烷,其质量浓度分别为5.97、3.51、2.63 μg/m3.②ρ(TVOCs)的日变化有3个较明显的峰值,分别出现在05:00、11:00和23:00,ρ(TVOCs)最低值出现在18:00,并且夜间ρ(TVOCs)高于白天.VOCs日变化特征表明,北京市VOCs污染受凌晨时段柴油车尾气排放和早晚交通高峰期汽油车尾气排放的影响较为明显.③春季VOCs的OFP(ozone formation potential,臭氧生成潜势)分析表明,芳香烃对OFP的贡献率(44.22%)最大,其次是烯烃(31.06%),最后是烷烃(23.86%);北京市VOCs污染的关键活性组分是丙烯、正丁烷、环戊烷、苯、甲苯、二甲苯.④PMF(正矩阵因子分析法)分析表明,溶剂使用源是北京市春季大气中VOCs最主要的排放源,对TVOCs的贡献率为39.06%,其次是移动源(33.79%)和油气挥发源(17.85%),燃烧源的贡献率(9.30%)最低.研究显示,控制移动源、溶剂使用源和燃烧源的排放是控制北京市环境空气中VOCs污染的关键.   相似文献   

17.
于2019年11月6~9日开展了深圳全市11点位105种VOCs组分的离线观测,评估了深圳市不同区域的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)的空间分布特征.结果表明:观测期间深圳市总VOCs,总OFP和总SOAFP分别为44.3×10-9,272.6和1.1μg/m3.从空间分布来看,VOCs,OFP与SOAFP具有相似特征,均呈现西高东低,北高南低的趋势,西北部工业区存在较多工业排放源,是削减VOCs的关键区域.从物种组成来看,体积浓度较高的物种有丙酮、二氯甲烷、乙烷;OFP较高的物种有1,3-丁二烯、甲苯、乙醛;SOAFP较高的物种有甲苯和二甲苯;且甲苯/苯比值表明溶剂排放等工业源对VOCs影响显著.从空间分布差异来看,正丁烷、甲苯和2,3-二甲基丁烷区域差异性较大.综合以上分析得出,正丁烷、异丁烷、甲苯、二甲苯和1,3-丁二烯作为化学活性较高且本地排放特征最显著的物种,是深圳市区域性O3和PM2.5协同防治的关键VOCs组分.  相似文献   

18.
工业VOCs气体处理技术应用状况调查分析   总被引:16,自引:0,他引:16       下载免费PDF全文
在调研大量工业VOCs气体处理工程案例的基础上,分析了不同工业VOCs气体处理技术的应用状况,包括不同处理技术在国内外的市场占有率、处理气体流量、VOCs浓度、VOCs种类以及所应用的行业等.结果表明,催化氧化、吸附、生物法是应用较多的VOCs处理技术.冷凝、膜分离和吸附工艺多用于处理浓度大于10000mg/m3的VOCs气体,并可回收VOCs;催化燃烧、热力燃烧工艺多用于处理浓度2000~10000 mg/m3且不具回收价值的VOCs气体;生物处理、等离子体多用于处理浓度低于2000mg/m3的VOCs气体.在进行VOCs处理技术选择时,应综合考虑VOCs气体特性(VOCs浓度、流量、温湿度、颗粒物含量)、VOCs处理技术的技术经济性能、排放标准等因素.  相似文献   

19.
某化工区典型高污染过程VOCs污染特征及来源解析   总被引:10,自引:9,他引:1  
高松  崔虎雄  伏晴艳  高爽  田新愿  方方  衣学文 《环境科学》2016,37(11):4094-4102
使用在线色谱观测了冬季某化工区典型雾霾污染时段VOCs污染特征,同时应用PMF模型对化工区VOCs来源进行分析.结果表明,观测期间VOCs主要组分是甲苯、二甲苯、C3~C4烷烃和氯仿等,有机硫组分是化工区异味的主要来源之一.2个高污染时段内主要污染因子为异丁烷、正丁烷、丙烷和丙烯腈这4种组分.VOCs和NOx具有夜间高而白天低的日变化特征,体现了其主要受化工区排放源的影响.O_3的日变化特征反映出明显的光化学反应过程,表明由于化工区VOCs排放影响,虽时处冬季,区域仍受到较明显的光化学污染影响.PMF解析得到6个因子,分别表征合成材料、涉硫工艺与废水处理、工业有机溶剂使用和石化工艺,排放贡献率分别是48.0%、24.0%、14.7%和13.3%.化工企业的废水处理单元为区域异味的重要来源之一.  相似文献   

20.
在2012年11~12月和2014年5~10月对上海市青浦区大气中58个VOCs物种进行了连续监测.结果表明,青浦区VOCs总体浓度水平较低,烷烃是其中含量最高的物种,百分含量为41.64%,其次为芳香烃25.66%、烯烃15.21%、乙炔7.71%.总VOCs的月变化特征表现为11月最高,10月最低;日变化特征表现为明显的双峰分布.通过OH消耗速率和臭氧生成潜势(OFP)计算,评估了VOCs的化学反应活性.结果表明,上海市青浦区大气VOCs的化学反应活性较强,且与VOCs浓度具有良好的一致性.OH消耗速率贡献最大的物种是烯烃56.92%和芳香烃45.24%,OFP贡献最大的物种是烯烃29.19%和芳香烃40.82%;对臭氧生成贡献最大的关键活性物种是乙烯、异戊二烯、甲苯、间/对二甲苯及丙烯等物质.利用化学质量平衡(CMB)模型分析了VOCs的来源,结果显示,上海市青浦区大气中VOCs主要有6个来源,分别是汽车尾气排放、LPG泄漏、涂料和溶剂挥发、植物排放、生物质燃烧、工业排放,其贡献率分别为43%、5%、16%、3%、14%、7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号