首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
为了改善城市空气质量,降低PM2.5浓度,需要制定科学的控制策略,同时兼顾污染物减排量与减排成本效益.本文基于区域大气环境模型RegAEMS与数学规划模型,采用多目标遗传算法,探究城市大气PM2.5污染的最优控制策略,并应用于临汾市(14类行业源、17个区域源)的PM2.5浓度达标规划,实现污染物排放量最大和减排成本最小的双目标优化.结果表明,在PM2.5平均浓度近200 μg/m3的重污染天气条件下,为达到PM2.5浓度目标(75μg/m3),临汾市最大污染物允许排放量为356.7t/d,最小减排成本为3.36亿元.NOx、SO2、NH3、VOCs和一次颗粒物的减排量分别为98.1,49.9,44.3,155.7和105.5t/d,减排成本分别为11.7,6.8,6.2,5.5和3.5千万元.对VOCs、NOx、PM2.5、NH3和SO2减排潜力最大的行业分别为焦化源、移动源、扬尘源、农业源和民用燃烧源,分别占所有行业5种污染物减排量的21.6%、14.1%、11%、8.6%和3.8%.钢铁行业的减排成本最高(39%);襄汾县的减排量最大,减排成本最高(达7218万元).  相似文献   

2.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

3.
针对京津冀及周边"2+26"城市秋冬季不同大气污染治理措施的减排量进行核算,结果表明,2017~2018年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为43.26,20.63,18.36,28.00和47.31万t,2018~2019年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为16.68,18.11,11.03,17.04和25.33万t.基于此,采用CAMx模型对各项措施的减排效果进行模拟评估,采取措施后,2017~2018年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为22.69μg/m3(42.67%),33.22μg/m3(37.81%),24.28μg/m3(22.58%)和31.26μg/m3(18.67%),2018~2019年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为9.36μg/m3(26.86%),25.73μg/m3(30.62%),16.38μg/m3(16.09%)和20.43μg/m3(12.33%).2017~2018年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:"散乱污"企业治理 > 交通运输结构调整 > 企业错峰生产 > 民用散煤替代 > 燃煤锅炉综合整治,2018~2019年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:重点行业升级改造 > 企业错峰生产 > "散乱污"企业治理 > 交通运输结构调整 > 民用散煤替代 > 燃煤锅炉综合整治.  相似文献   

4.
北京市燃煤源排放控制措施的污染物减排效益评估   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析北京市燃煤源排放控制措施的污染物减排效益,基于MEIC(中国多尺度排放清单模型),采用情景分析法,评估了北京市电厂能源清洁化与末端治理、燃煤锅炉改造和城区平房区居民采暖改造等措施的污染物减排效益.结果表明,相对于无控情景,2013年北京市电厂能源清洁化与末端治理减少PM2.5、PM10、SO2和NOx排放量为1.28×104、2.10×104、5.13×104和4.98×104 t,分别占无控情景的85%、86%、87%、74%;北京市燃煤锅炉改造减少PM2.5、PM10、SO2、NOx排放量为1.09×104、2.68×104、11.64×104和5.81×104 t,分别占无煤改气情景的83%、89%、83%、83%;北京市老旧平房区的居民采暖改造减少PM2.5、PM10、SO2和NOx排放量分别为630、870、2 070和790 t,均占无煤改电情景的8%.研究显示,北京市从1998年开始采取的各种减排措施有效地减少了污染物的排放,对北京市空气质量改善具有重要意义.   相似文献   

5.
基于2016年河南省农村污染物排放清单,采用县级优化模型,设置了基准和散煤治理2种情景,评估了2025年1月份河南省农村散煤替代的减排潜力,利用空气质量模型(WRF-CMAQ)模拟其对PM2.5污染改善的贡献,并采取泊松回归模型分析了相应的居民健康效益.结果表明,由于围护结构改造的成本较低及保温效果显著,其与采暖设备的组合技术在河南省农村家庭是最适合推广的采暖技术.在散煤治理情景下,2025年1月河南省农村居民燃烧源的SO2,NOx,CO,PM10,PM2.5,VOCs,NH3排放量与基准情景相比分别下降了98.3%,82.6%,99.8%,99.2%,98.8%,98.2%和99.4%.散煤治理情景下河南省2025年1月PM2.5浓度模拟结果与基准情景相比下降4.1μg/m3,可以避免2220人过早死亡,带来23.5亿元经济效益.  相似文献   

6.
京津冀地区是我国钢铁行业集中布局的地区,也是大气污染最突出的地区.分析京津冀地区钢铁行业各类治污工具的中长期减排影响,对于选择最优减排措施、加快推动该地区大气污染治理意义重大.构建基于LEAP模型的京津冀地区钢铁行业模型,以2015年为基准年,以每5 a为一个时间节点,结合规模减排、结构减排、技术减排、末端治理4种减排措施,模拟计算了4种单一政策情景及4种组合政策情景下2015-2030年京津冀地区钢铁行业主要污染物(SO2、NOx、PM10、PM2.5、CO2)排放量及相应的减排影响.结果表明:在单一政策情景下,规模减排情景对5种污染物减排效果均十分显著.在组合政策情景下,4种减排措施叠加的综合减排情景效果最好,在该情景下京津冀地区钢铁行业到2030年SO2、NOx、PM10、PM2.5、CO2排放量将分别削减27.73×104、17.85×104、42.94×104、27.35×104、23.15×107 t;在规模-末端治理情景下,除CO2外其余污染物减排效果仅次于综合减排情景;规模-结构减排情景对PM10和PM2.5的减排效果相对明显;规模-技术减排情景对CO2、SO2、NOx的减排效果相对明显.研究显示,京津冀地区钢铁行业需要在大力淘汰落后过剩产能、缩减产量等源头治理措施的基础上,持续加强末端治理、提高废钢比例、提升节能减排技术水平等协同治理能力,以提高治污减排效果.   相似文献   

7.
为研究2020年初新冠疫情严控措施对南京市空气质量的影响,选取1月25日~2月10日(疫情严控期)南京及周边省会城市空气质量监测数据,与5a同期数据进行对比,分析时空分布特征.结果表明,疫情停工期间,降水量同比下降,大气扩散条件为近5a较差水平,但除O3浓度不降反升外,其他主要污染物PM2.5、PM10、SO2、NO2和CO浓度均达近5a最低值,分别为36,44,5,22μg/m3和1.1mg/m3.通过推算疫情停工期间本地减排措施的“净环境效益”,严控使得PM2.5、PM10、SO2、NO2和CO分别下降了41.7%、45.3%、14.3%、43.5%、18.2%,O3浓度上升了4.8%.从空间上分析,南京市SO2浓度及其同比降幅在长三角省会城市内排名第1,其他污染物改善情况处于中等水平.从日变化可知,PM2.5和PM10日变化由双峰型变为单峰型,夜间未出现次峰值.O3夜间浓度明显升高,原因是交通源的大幅削减使NO对O3的滴定反应降低,而白天O3浓度峰值取决于VOCs和NOx的减排比例.  相似文献   

8.
伴随着超低排放技术在中国火电行业的广泛应用,中国火电行业排放水平已发生了显著变化.故现有火电排放清单排放因子和排放量等无法反映当前火电污染物排放提标情况.基于全国火电在线监测(CEMS)、环境统计和排污许可等数据,提出一种自下而上逐企业建立中国火电行业排放清单的方法.与传统方法相比较,该方法的特点是更加全面的考虑了火电行业超低技术,实际排放浓度与活动水平等综合因素.作为实例,本文基于所提出的火电行业排放清单的方法计算了新的2015年中国火电行业排放清单(HPEC).结果表明2015年全国火电厂SO2、NOx和烟尘平均排放浓度范围分别为7.88~208.57、40.33~238.2和5.86~53.93mg/m3.北京、上海火电排放基本达到《煤电节能减排升级与改造行动计划(2014~2020年)》制定的超低改造目标;绝大部分的省份SO2、NOx在线监测均值小于排污许可执行标准均值.中国燃煤机组的SO2、NOx、烟尘排放因子平均值分别为0.67、0.76、0.16g/kg(以入炉煤计).全国火电CO、VOCs、NOx、SO2、PM10、PM2.5总排放量分别为403.87、10.73、122.94、146.68、28.72和22.80万t/a,平均排放绩效值分别为1.06、0.03、0.32、0.39、0.08、0.06g/(kW×h).  相似文献   

9.
北京市能源消费正面临着污染物减排和保障居民健康的双重约束. 针对未来城市能源消费设计BAU(基准情景)和2个分别基于近期和中长期节能环保要求的受控情景(EC1、EC2),模拟预测了3个情景下主要大气污染物(SO2、NOx、PM10、PM2.5)在目标年(2020年)的排放水平,以确定大气污染减排潜力. 分别采用综合暴露-反应关系模型(IER)和泊松回归模型,评估北京市居民对PM2.5暴露的健康风险,估算健康损失的经济价值. 结果表明:相较BAU情景,在EC1情景下, SO2、NOx、PM10、PM2.5减排率分别达到52.95%、49.77%、32.82%、41.41%,可减少PM2.5暴露下居民死亡和发病219 783例,其中死亡1 295例、住院3 920例、门诊182 558例、患病32 011例,获得健康效益111.87×108元;在EC2情景下,SO2、NOx、PM10、PM2.5的减排率分别达到66.61%、63.42%、54.96%、57.44%,可减少PM2.5暴露下居民死亡和发病519 234例,其中死亡2 930例、住院9 248例、门诊427 070例、患病79 986例,获得健康效益290.10×108元. 相较EC1情景,EC2情景可产生更大的减排潜力和居民健康效益. 从空间分布上来看,北京主城区因能源方案优化获得的健康效益较大,约占总健康经济效益的60%.   相似文献   

10.
基于2018年上海市3种类型的交通环境空气监测站(路边站,港口站和机场站)的在线监测数据,探讨了3种交通站污染物的浓度水平和昼夜分布特征,比较分析了同期上海市环境空气污染物浓度,并揭示了工作日和非工作日对交通环境空气的影响.结果显示,上海市交通环境空气,尤其是港口环境空气中NOx,NO2和NO年小时平均浓度显著高于上海市年小时平均浓度;其中NO高出上海市年小时平均浓度比例最高,港口,路边和机场环境空气NO浓度分别为68,36和17μg/m3,分别高出上海市年小时平均浓度871%,414%和143%;交通环境空气中的O3平均浓度范围为42~65μg/m3,均低于上海市平均浓度.NOx,NO2,NO,PM10,PM2.5,CO和BC(黑炭)昼夜浓度主要呈现双峰分布特征,且峰值出现时间与交通活动高峰时间较为吻合;O3的峰值大多出现在13:00,且机场环境空气浓度中O3浓度最高,峰值浓度为108μg/m3.非参数检验结果显示,上海市路边环境空气中SO2,NOx,NO2,NO,PM10,PM2.5,O3,CO和BC在周一~周日无明显差异(P>0.05).  相似文献   

11.
为研究京津冀地区民用散煤燃烧大气污染物的排放情况,结合散煤燃烧活动水平与燃用特征,根据排放因子法自下而上建立了2018年京津冀地区民用散煤燃烧污染物排放清单,研究了污染物排放的时空分布特征并使用蒙特卡罗方法对排放清单进行了不确定性分析.结果表明:2018年京津冀地区民用散煤燃烧量共计3799.22万t,PM2.5、CO、SO2、NOx的排放量分别为9.27,341.31,5.17,5.44万t.污染物排放集中在11月份~次年3月份,大多数地区呈现出相同的日排放趋势.8:00、11:00、18:00、21:00左右出现污染物排放峰值,小时排放系数平均值分别为11%,6%,7%,13%.PM2.5排放高值区主要集中在北部、东部及部分南部地区,CO主要集中在北京和天津地区,SO2和NOx主要集中在天津和承德地区.  相似文献   

12.
本文提出一种基于气象条件分型的城市大气环境允许排放量测算方法,该方法基于环境空气质量和颗粒物组分数据,对气象条件进行分污染天气类型的二次转化规律研究,并确定不同天气类型下的迁移扩散系数.基于扩散理论,建立了污染物排放强度、不同天气类型迁移扩散系数和目标控制浓度之间的关系,在特定区域排放布局和排放方式基本不变的前提下,测算不同天气类型达空气质量标准下的一次PM2.5,PM10,NOx和SO2的允许排放量.以沧州市为例,结合空气质量从优到严重污染程度将对应气象要素依次划分为7种天气类型,测算7种天气类型达空气质量目标下的主要污染物允许排放量.基于2018年基准年的排放量,在天气类型7最不利气象条件下,沧州市一次PM2.5,PM10,NOx和SO2排放量削减率应分别在82.62%,81.17%,75.05%和74.54%以上,才能达到空气质量标准.结果表明,不利气象条件下大气环境允许排放量很小,需要更大力度减少污染物排放,才能避免发生重污染天气.  相似文献   

13.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   

14.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

15.
选取北京市地区典型生物质燃料(玉米芯、玉米秆、黄豆秆、草梗、松木、栗树枝、桃树枝)以及民用煤(烟煤、蜂窝煤)在实验室内进行了模拟燃烧实验,采用Thermo Fisher 42i型化学发光NO-NO2-NOx分析仪、43i型脉冲荧光SO2分析仪、48i型CO分析仪对烟气中的NOx、SO2、CO进行全程在线监测;对燃烧产生的颗粒物样品进行采集,采用ICS 90A、ICS2000离子色谱仪对不同粒径段颗粒物中的水溶性无机离子进行测定.研究表明:3类民用燃料排放因子均值由大到小的顺序,SO2为民用煤 > 薪柴 > 秸秆;CO为秸秆 > 民用煤 > 薪柴;NOx为薪柴 > 民用煤 > 秸秆.薪柴燃烧产生的PM2.5中SO42-含量最高,占总水溶性无机离子的22%~30%;秸秆类燃烧产生PM2.5中的水溶性无机离子K+占绝对优势,占总水溶性无机离子的36%~49%,其次为Cl-或SO42-,两者之和占总水溶性无机离子的35%~44%.3类民用燃料中秸秆类燃烧排放的颗粒物中水溶性无机离子的排放因子最高,其次为薪柴类燃料,民用煤最低.本实验对不同粒径段颗粒物中9种水溶性无机离子进行了分析(Na+、K+、Mg2+、Ca2+、NH4+、F-、Cl-、NO3-、SO42-),薪柴类燃料燃烧排放的颗粒物中,Na+、K+、NH4+、F-的排放因子在0~2.5μm粒径段内最大,Mg2+和Ca2+的排放因子在2.5~10μm粒径段内最大.秸秆类燃料除Ca2+、Mg2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大.对于烟煤而言,除了K+、Mg2+和Ca2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大;蜂窝煤中Na+、K+、Cl-、NO3-、SO42-的排放因子均在0~2.5μm粒径段内达到最大.  相似文献   

16.
根据清洁空气行动计划,北京市将继续调整能源结构,新建天然气热电中心替代燃煤发电,并且进行工业锅炉煤改气、居民供暖煤改电、远郊区炊事用气改造等措施,以减少煤炭的使用量. 采用自下而上的排放因子法,估算减少燃煤所产生大气污染物(TSP、PM10、一次PM2.5、SO2、NOx及VOC)的减排量,并利用ADMS-Urban模型模拟其对环境空气质量的改善. 结果表明:①2015年北京市煤炭控制在1500×104t以内,测算的煤炭减量为863.38×104t,TSP、PM10、一次PM2.5、SO2、NOx和VOC的减排量分别为2580.17、2032.94、1183.53、6265.30、7220.90和1058.44t. ②各污染物减排空间分布基本一致,主要集中在城市功能拓展区,包括石景山、朝阳区、海淀区和丰台区等,上述区域对TSP、PM10、一次PM2.5、SO2、NOx和VOC削减贡献分别达到78.3%、81.5%、82.7%、85.2%、83.0%和49.9%. ③ADMS-Urban模型模拟结果表明,减少燃煤可使环境空气中ρ(TSP)、ρ(PM10)、ρ(一次PM2.5)、ρ(SO2)、ρ(NOx)和ρ(VOC)分别降低0.55~12.74、0.44~10.78、0.27~6.77、0.78~17.31、1.67~43.48和0.17~12.07μg/m3.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号