首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以传统中药-黄芪废渣为原料,分别在200℃、400℃、500℃、600℃和700℃的厌氧氛围下热解制备生物炭材料(BC200、BC400、BC500、BC600和BC700),并利用BET比表面积分析、FTIR光谱分析、扫描电子显微镜等方法对其进行表征,同时考察不同投加量、吸附时间、初始浓度和pH值下生物炭对磺胺甲基嘧啶的吸附特征.结果表明,随制备温度的升高,生物炭的表面积及吸附性能也显著增加.相比原状黄芪渣(SBET=0.42m2/g),BC700的BET比表面积(SBET=155.69m2/g)增大370倍,对磺胺甲基嘧啶的吸附容量增加185倍.BC700对磺胺甲基嘧啶的等温吸附过程符合Langmuir模型(R2=0.9977),最大吸附容量为11.96mg/g,吸附反应过程满足准二级动力学方程(R2>0.994),且为化学吸附.同时随着溶液初始pH值和投加量的升高,生物炭的吸附容量先增大后减小,最佳吸附pH值为4.  相似文献   

2.
余剑  丁恒  张智霖  李燕  丁磊 《中国环境科学》2021,41(12):5688-5700
以菱角壳为原料,乙酸钾为活化剂,通过活化碳化一步法制备了改性生物炭(MBC),对其表面形貌、孔径分布、官能团等表面性能进行了表征,并研究了其对水中盐酸土霉素(OTC)的吸附去除行为.相比于热解生物炭(BC),MBC有更高的比表面积(1147.80m2/g)、更丰富的孔径结构,更多的含氧官能团和更强的亲水性.溶液pH值在3~8时,MBC对OTC保持较高的吸附量(165mg/g).拟二级动力学模型和Langmuir模型可以很好地描述MBC对OTC的吸附行为.热力学分析显示MBC对OTC的吸附是一个自发吸热过程.除氢键作用、π-π键堆积作用和阳离子-π键作用以外,孔填充是MBC吸附去除OTC的主要作用机理.0.5mol/L氢氧化钠溶液可有效再生吸附饱和的MBC.因此,MBC作为一种吸附剂去除水和废水中的土霉素具有较好的潜能.  相似文献   

3.
不同生物炭对磷的吸附特征及其影响因素   总被引:1,自引:1,他引:0  
为了实现植物生物质资源化利用,选择5种生物质材料制备生物炭,通过比较5种生物炭材料的磷吸附能力,筛选出了2种磷吸附效果较佳的材料,并探明了筛选生物炭材料的理化性质及其对磷的吸附特征.结果表明,5种生物炭材料中,仅水稻秸秆和玉米秸秆生物炭对磷具有吸附能力.Langmuir等温吸附曲线表明,水稻秸秆生物炭对废水中磷的吸附能力强于玉米秸秆生物炭,理论最大吸附量为:水稻秸秆生物炭(9.78 mg·g-1)>玉米秸秆生物炭(0.39 mg·g-1).水稻秸秆生物炭的比表面积(148.30 m2·g-1)和总孔体积(0.11 cm3·g-1)远高于玉米秸秆生物炭8.26 m2·g-1和0.03 cm3·g-1,同时水稻秸秆生物炭有更高的Mg、 Ca、 Fe和Al元素含量.水稻秸秆生物炭和玉米秸秆生物炭对磷吸附的最佳pH为酸性;在不同的pH范围内(3.0~11.0),水稻秸秆生...  相似文献   

4.
不同温度桉树叶生物炭对Cd2+的吸附特性及机制   总被引:2,自引:0,他引:2  
通过元素分析、BET-N2、Zeta电位、Boehm滴定,SEM-EDS、FTIR等分析方法对不同热解温度(300、500和700℃)下制备的桉树叶生物炭进行表征,研究了3种生物炭(BC300、BC500和BC700)对Cd2+的吸附特性与机制.结果表明,随温度升高,生物炭产率下降,灰分、pH值和Zeta负电荷量上升,比表面积增大.当Cd2+浓度为20mg/L时,平衡时间依次为80min(BC700)<360min(BC500)<540min(BC300),均符合准二级动力学模型(R2>0.98),以化学吸附为主.BC300和BC500吸附过程均符合Langmuir和Freundlich模型,BC700更符合Freundlich模型,最大吸附量依次为BC700(94.32mg/g) > BC500(67.07mg/g) > BC300(60.38mg/g).在Boehm滴定结果分析的基础上,结合FTIR和SEM-EDS,表明生物炭吸附机制主要为静电吸附和官能团络合作用.BC700吸附性能最佳,原因可能是具有较大的比表面积、较多的负电荷量和较为丰富的官能团.  相似文献   

5.
酸/碱改性香蒲生物炭对水中磷的去除及其机制研究   总被引:1,自引:0,他引:1  
雨水径流中存在的磷污染问题严重威胁生态环境,而传统的雨水径流处理设施,如雨水花园、渗滤沟等,对磷的去除率较低且成本较高.以湿地中收割的香蒲为原材料,酸改性后制备的生物炭(TH7)的除磷效果非常好,明显优于碱改性生物炭(TOH7):与原生物炭(T7)相比,酸改性生物炭大大提高了磷的去除效率,可从T7的65%提高至94%,而碱改性生物炭无除磷效果.TH7的表面孔隙发达,比表面积高达434.2m2·g-1,对磷的吸附符合Freundlich模型和伪二级动力学模型,其吸附属于物理化学吸附,具体的机制为孔隙填充、表面化学沉淀、氢键结合.研究表明,以香蒲为原料制备的改性生物炭是一种效果优越的除磷吸附剂,可应用于植草沟、雨水花园等以填料为主要吸附层的径流处理设施中.  相似文献   

6.
利用磷溶菌(PSB)对稻壳(RB)和污泥(SB)生物炭进行不同时间的改性,研究了其对水体中Pb2+和Cd2+(1000mg/L)的修复机制.主要通过测定改性生物炭的理化特性和重金属含量,并利用结构方程模型研究了微生物改性生物炭对重金属的吸附机理.结果表明,PSB显著改善生物炭的孔径结构、比表面积BET (增加了12.5%~175.0%)和表面官能团.特别是还增加了生物炭中C和P元素的释放,促进了生物炭表面的生物矿化机制.PSB改性显著提高了生物炭对Pb2+和Cd2+的吸附作用(RB提高:Pb2+=9.5%~34.5%,Cd2+=34.7%~219.9%,SB提高:Pb2+=65.3%~101.3%,Cd2+=106.6%~248.6%).通过Pb和Cd的修复差异,发现不同重金属对微生物的胁迫是导致改性生物炭对重金属的修复反应路径相反的原因.此外,结构方程模型证实6~12h的PSB改性效果最好,且BET不是主要影响因素.不同的生物质炭改性后的修复机制也存在明显差异,孔径结构(Rmax2=0.99)是改性RB的主要吸附途径,化学沉淀(Rmax2=0.99)是改性SB的主要吸附途径.  相似文献   

7.
浒苔生物炭对雨水径流中氨氮的吸附特性及吸附机制   总被引:1,自引:0,他引:1  
为探究生物滞留池填料(浒苔生物炭)处理雨水径流氨氮(NH4+-N)的去除效果及机制,进行室内批量吸附实验,在对浒苔生物炭进行碱改性(1、2和3 mol·L-1 NaOH改性,分别标记为BC1、BC2和BC3)基础上,开展改性前后浒苔生物炭对NH4+-N吸附性能研究.结果表明:①适宜浓度的碱改性提高了浒苔生物炭的比表面积和表面微观结构,增加了O元素含量,丰富了表面官能团,其中BC2改性效果最好.②浒苔生物炭对NH4+-N的吸附在pH值9.0和生物炭投加量0.5 g·L-1时,吸附量最大,BC1和BC2的吸附量比BC分别提高6.4%和10.8%,BC3则降低13.7%,BC2吸附效果最好,饱和吸附量达16.76mg·g-1.③浒苔生物炭对NH4+-N的吸附机制为单分子层的化学吸附,吸附过程受到生物炭的高pH值、孔隙的静电吸引以及表面羟基(-OH)、羧基(-COOH)和碳氧单键(C-O)等官能团的络合氧化等的促进作用.综上所述,适量的NaOH来改性浒苔生物炭能够提高对NH4+-N的吸附效果,可作生物滞留池的填料来去除NH4+-N污染.  相似文献   

8.
作者设计了一种含有表面衍生官能团的生物质材料,用于吸附印染、脱硫等废水中的可溶性铅污染。在500℃热解下,采用熔盐法制备生物炭材料,其产率接近40%,具备介孔/大孔杂化特性,比表面积接近300 m2/g。通过高锰酸钾改性,发现其对Pb2+的最大吸附量可以达到商业活性炭的8倍。研究初始pH、吸附时间、污染物浓度等因素对生物炭吸附Pb2+的影响,发现生物炭对Pb2+的吸附倾向遵循准二级动力学模型和Langmuir等温吸附模型。结合生物炭吸附剂使用前后的材料表征,阐述了包括静电作用、π-π作用、离子交换和络合作用在内的吸附机制。研究结果还表明生物炭BC-B在酸性条件下可以快速有效地吸附Pb2+,在生物炭投加量=0.5 g/L、[Pb2+]=400 mg/L、pH=7的条件下对Pb2+的最大吸附量达到440.0 mg/g。同时循环再生实验和工业废水应用实验证明,该生物炭在治理含重金属的酸性工业废水中具有潜力。  相似文献   

9.
以富营养化湖泊水华暴发的主要藻种-微囊藻干物质作为生物吸附剂,考察不同生物量、初始pH值、吸附时间等因素对废水中锑(V)生物去除作用的影响,探讨微囊藻对Sb(V)的生物吸附性能;通过zeta电位和红外光谱技术揭示其吸附机理,并推断其反应方程式.结果表明:在室温条件下,吸附剂用量为0.5g:20mL,pH值为2.0,时间为1h时,Sb(V)的生物吸附达到最大容量为5.84mg/g(以干重计),吸附等温线符合Langmuir等温方程(R2=0.993),生物吸附动力学过程遵循假二级动力学模型(R2=0.994).在pH值2.0~9.0范围内,其生物吸附效率随pH值增加逐渐下降.Zeta电位和ATR-IR光谱结果表明微囊藻细胞壁表面的氨基、羧基和羟基为Sb(V)的主要吸附位点,其中质子化的氨基通过静电吸引作用结合Sb(V),羧基和羟基则通过表面络合作用与Sb(V)结合形成内源络合物.  相似文献   

10.
针铁矿改性生物炭对砷吸附性能   总被引:17,自引:10,他引:7  
为了提高生物炭(BC)对砷的吸附能力,本研究选取小麦秸秆作为原料,采用共沉淀方法制备了针铁矿(Goethite)改性生物炭材料(Goethite@BC).比较了BC、Goethite和Goethite@BC对As(Ⅲ)的吸附特性,同时使用SEM-EDS、BET、FT-IR、XRD和XPS等技术对改性吸附剂的理化性质和吸附机制进行表征.结果表明,扫描电子显微镜分析显示有纳米级针铁矿附着在生物炭表面,可有效提高生物炭的比表面积和总孔容; 3种吸附剂对As(Ⅲ)的吸附符合伪二级动力学模型和Langmuir等温吸附模型,Goethite@BC对As(Ⅲ)的最大吸附量为65. 20 mg·g~(-1),与BC相比吸附量提高了62. 10倍. Goethite@BC吸附机制包括非特异性吸附(静电引力)和特异性吸附(配位、络合、离子交换等),纳米针铁矿颗粒在Goethite@BC表面对污染物的吸附起到重要作用. Goethite@BC在污染物修复领域具有很好地应用前景.  相似文献   

11.
水环境中过量Sb(Ⅴ)所引起的环境危害受到越来越多的关注.为了考察工艺参数对铁盐改性生物吸附剂吸附Sb(Ⅴ)效果影响、交互作用及其机理,以Fe(Ⅲ)改性卡氏变形杆菌吸附剂(简称“FMPAs”)为研究对象,采用Box-Behnken响应曲面法对FMPAs吸附处理合成含Sb(Ⅴ)废水的吸附时间、FMPAs投加量、pH、温度及Sb(Ⅴ)初始浓度等因素进行优化,确定了最优吸附条件,并对吸附过程的等温模型、动力学模型及吸附机理进行了研究.结果表明:①FMPAs吸附Sb(Ⅴ)的最优条件为吸附时间3.0 h、FMPAs投加量1 910.04 mg/L、pH 2.31、温度45.0℃、Sb(Ⅴ)初始浓度24.80 mg/L,且最优条件下Sb(Ⅴ)的去除率高达97.03%.②FMPAs对Sb(Ⅴ)的吸附符合Langmuir等温吸附模型,其最大吸附容量(qmax)为60.506 mg/g,其吸附动力学过程可采用准一级动力学模型拟合,属于单层吸附和化学吸附.③FMPAs吸附Sb的机理主要为Fe(Ⅲ)改性卡氏变形杆菌生成了Fe—O—OH、Polyose—Fe、Polyose—O—Fe(OH)2等化合物,这些物质中羟基被Sb(Ⅴ)取代生成新的配合物Fe—O—Sb,使Sb(Ⅴ)得到吸附去除.研究显示,FMPAs对Sb(Ⅴ)具有较高的吸附容量,是一种极具潜在应用价值的绿色生物质吸附剂,可用于处理含Sb(Ⅴ)废水.   相似文献   

12.
探讨污泥在乙醇-水混合溶剂中液化产生的生物炭的吸附潜力及其吸附机理(以亚甲基蓝(MB)废水为处理对象),结果表明:生物炭的吸附容量随着MB溶液起始pH值升高而升高,当pH超过8时,MB的碱性褪色开始显现.吸附温度的上升(30~60℃)对生物炭吸附容量的影响不明显.吸附容量总体上随着吸附时间的增加而上升(240min前),在240min后趋于稳定.吸附剂用量及初始MB浓度过高或过低都不利于生物炭的吸附,存在一个的临界点,分别是6mg和120mg/L.生物炭吸附MB的过程吻合准二级动力学方程(R2=0.9994)和Langmuir方程(R2=0.9831),且为自发吸热的过程,受物理吸附和化学吸附联合控制,具体的机理包括:离子交换、官能团络合、π-π吸附等.  相似文献   

13.
采用磷酸作为活化剂对黍糠生物炭进行改性,得到富含活性官能团的功能性生物炭(fCBC),并将其作为硫化锰(MnS)的载体,最终成功制备出硫化锰负载的磷酸改性生物炭(MnS-fCBC),可用于水体中镉(Cd)的高效去除.系统评价了初始浓度、初始pH值以及MnS-fCBC投加量对于吸附反应的影响. MnS-fCBC表现出优越的吸附Cd的能力,在初始Cd浓度为200mg/L、pH=6和投加量1g/L的条件下,MnS-fCBC对于Cd的吸附容量最大,达145.15mg/g.吸附反应受pH值影响显著,在偏酸性条件下能取得较好的去除效果.通过X射线衍射仪(XRD)和拉曼光谱仪(Raman)对MnS-fCBC进行结构表征分析,结合批次试验探讨了Cd的去除机理.结果表明,表面络合和化学沉淀是Cd去除的主要机理.材料的回用性能试验显示,在5次循环使用后,材料依然有较高的Cd去除能力,表明其具有较高的可重用性.因此,MnS-fCBC可作为一种高效的Cd吸附剂,应用于含Cd废水处理.  相似文献   

14.
高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性   总被引:1,自引:0,他引:1  
以桉木为原料,使用高锰酸钾对桉木生物炭(BC)进行改性,制备改性生物炭(KBC).对其进行表征,并进行了水溶液中Pb (Ⅱ)的静态吸附实验,探究了溶液pH、吸附剂投加量、吸附时间、温度和初始浓度对Pb (Ⅱ)的吸附效果影响.结果表明,最佳吸附反应pH为5,吸附在6 h达到饱和,当温度为25℃,Pb (Ⅱ)的初始浓度为100mg ·L-1,吸附剂投加量为0.06 g时,KBC对Pb (Ⅱ)的最大吸附量为83.059mg ·g-1,去除率为99.67%.KBC对Pb (Ⅱ)的吸附遵循二级动力学模型和Langmuir等温吸附模型,其是发生在均匀表面的单层吸附.采用BET、SEM-EDS、XRD、FT-IR和XPS对吸附剂进行表征分析,发现吸附机制主要是KBC含氧和KBC含锰基团通过络合作用和沉淀作用来吸附Pb (Ⅱ),以及在吸附过程中生物炭表面会形成—O—Pb—O—双齿配合物.因此,高锰酸钾改性BC可以作为一种很好的Pb (Ⅱ)吸附剂.  相似文献   

15.
通过固定床石英管热解装置将稻壳、木薯秸秆及玉米秸秆在350、450、500、550、600℃进行充分热解制备生物炭,利用图像识别技术获得生物炭的RGB值(红、绿、蓝三个通道的颜色)及相应的灰度值,研究了生物炭灰度值与其水溶液中的pH值及阳离子(NH4+-N及K+-K)吸附性能的关系.结果表明:3种生物炭的pH值随着灰度值的增加呈现“S”型增长趋势,并符合DoseResp模型,回归方程的决定系数(R2)分别为0.9766、0.9592和0.9219,残差平方和(RSS)均小于0.01;除玉米秸秆炭的K+-K吸附量与灰度值的关系为线性负相关外,3种生物炭的NH4+-N和K+-K吸附量与灰度值之间满足一元高次非线性模型,R2范围在0.8595~0.9999.本研究为快速预测生物炭在水溶液中的pH值和阳离子吸附性能提供了理论基础.  相似文献   

16.
灰分对挺水植物生物炭吸附硫丹的影响   总被引:1,自引:0,他引:1  
将美人蕉、菖蒲和芦苇等挺水植物通过限氧高温热解(500℃)制备生物炭,探究灰分对生物炭吸附硫丹的影响.研究表明:挺水植物生物炭表面孔隙发育成熟,以介孔为主,灰分含量较高(15.86%~27.29%),主要成分可能为碳酸钙.生物炭对硫丹的非线性吸附常数介于0.63~0.80之间,较去灰生物炭大(0.61~0.72).去灰后,生物炭对β-硫丹和α-硫丹的吸附能力降低(logKF在6744~11111mg/kg之间).但各生物炭比表面积增大(20.55~58.13m2/g),(O+N)/C值变小,炭表面极性降低,疏水性增强;且表层碳元素与主体碳占比增加,炭表面暴露出更多的有机质,增强对硫丹的疏水作用.加入上清液后,去灰后美人蕉、菖蒲和芦苇生物炭对硫丹的吸附变化显著,其上清液中的溶解性物质增强了去灰生物炭对硫丹的吸附作用.  相似文献   

17.
为了探究NBC(氨基修饰生物炭)对U(Ⅵ)的吸附性能,通过在BC(未修饰生物炭)上负载氨基的方法得到氨基修饰生物炭,研究BC、NBC对水溶液中U(Ⅵ)的吸附特征,分析生物炭添加量、溶液pH、溶液中阴离子、初始ρ〔U(Ⅵ)〕、吸附时间和吸附体系温度等因素对U(Ⅵ)吸附的影响,筛选最优的吸附条件,并利用SEM(扫描电镜)、FT-IR(傅里叶红外光谱)、XRD(X-射线衍射)、XPS(X-射线能谱)、BET比表面积、元素分析、零点电位(Zeta电势)测定等手段表征BC、NBC的结构特征,并进一步探讨其对U(Ⅵ)的吸附机理.结果表明:①NBC的比表面积和吸附位点显著增加,对U(Ⅵ)的吸附速率和吸附量明显增加,NBC的最大吸附量(69.63 mg/g)大于BC(53.95 mg/g). ②NBC对U(Ⅵ)吸附的最佳条件为生物炭添加量0.4 g/L、pH 6、初始ρ〔U(Ⅵ)〕20 mg/L、吸附时间1 h、吸附体系温度328 K. ③BC、NBC对U(Ⅵ)的吸附动力学均符合伪二级动力学方程,R2均为0.999;等温吸附过程均符合Sips等温吸附模型,R2均大于0.914.研究显示,NBC的吸附能力强、环境耐受性好,具有很好的应用潜力.   相似文献   

18.
陈琳媛  邱振鲁 《环保科技》2024,(1):35-39+46
本研究采用热分解的方法制备花生壳生物炭,并用乙醇、硝酸和高锰酸钾溶液对其进行改性。分别研究不同方法改性后生物炭吸附Cd2+的性能对初始浓度、吸附时间和pH的响应特征并通过吸附热力学和动力学探索吸附机理。结果表明,改性后的花生壳生物炭对Cd2+的吸附量和去除率明显提高。在花生壳投加量一定的情况下,综合分析得知硝酸改性后对Cd2+吸附效果最佳,吸附量为48.47 mg/g,去除率为96.94%。最佳条件为:Cd2+初始浓度200 mg/L,pH为7,吸附时间120 min。  相似文献   

19.
秸秆生物炭对双氯芬酸钠的吸附性能研究   总被引:3,自引:0,他引:3  
利用廉价的农业废弃物稻草秸秆,通过磷酸氢二铵((NH42HPO4)活化制备得到秸秆生物炭(SBC),通过扫描电子显微镜(SEM)、比表面积分析(BET)、红外光谱(FTIR)等手段对其进行表征.研究了SBC对双氯芬酸钠(DCF)的吸附去除,并探讨了吸附时间、SBC投加量、pH值、阴离子浓度对吸附过程的影响.结果表明,当SBC投加量为0.3g/L时,DCF浓度为0.05mmol/L,60min后吸附量达到平衡;pH值范围在5.00~9.00时,SBC对DCF的吸附量去除率随着pH值的增加而减少;Cl-、SO42-和HCO3-对吸附过程的影响不大.拟合结果表明,SBC对DCF的吸附过程更符合准二级动力学模型和Freundlich吸附等温线.经Langmuir等温线模型计算理论最大吸附量为277.78mg/g(pH=7.00,T=20℃).热力学参数表明SBC对DCF的吸附是自发吸热过程.同活性炭和碳纳米管相比,SBC对DCF的吸附效果更好.  相似文献   

20.
以纳米二氧化硅为硅源制备硅改性生物炭,利用吸附动力学、吸附等温线及SEM-EDS、XRD、FTIR、XPS等表征研究硅改性生物炭对水中Cd(Ⅱ)的吸附机理,并定量分析各种吸附机制的贡献率.结果表明,当添加SiO2质量比为0.5%时制备的生物炭(0.5SiBC)吸附Cd(Ⅱ)效果最佳,最大吸附量为132.64 mg·g-1,是未改性生物炭(BC)的1.56倍;0.5SiBC对Cd(Ⅱ)吸附过程符合拟二级动力学和Freundlich模型,其吸附过程属于化学吸附;XRD、FTIR和XPS等结果表明,0.5SiBC吸附Cd(Ⅱ)的机理主要有矿物质沉淀、离子交换作用和络合作用,各种机理贡献率依次为:矿物质沉淀(46.61%)>离子交换(33.79%)>其他机理(18.36%)>络合作用(1.24%);0.5SiBC对Cd(Ⅱ)的离子交换和矿物质沉淀量比BC分别提高133.80%和41.46%,硅改性主要通过提高生物炭的离子交换和矿物质沉淀能力来提高吸附Cd(Ⅱ)的能力.研究表明,硅改性生物炭作为去除水溶液中Cd(Ⅱ)的吸附剂具有较好的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号