首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The difficulty of dealing with construction and demolition waste (CDW) on construction sites is not new and continues to be an environmental problem. Understanding the waste generated in a construction work is essential to optimize CDW management. Therefore, any tool used for establishing an estimation of the CDW that will be generated should be considered as an alternative to achieve real solutions pursuing sustainability. This paper presents the evolution of CDW flow generation in the construction of new residential buildings, and has identified that the construction activity is increasing the waste generation. In an attempt to find some solutions and provide improved alternatives, several building sites have been analysed in order to quantify the estimation of CDW generated. Results show that when using plasterboard walls the CDW generation, per m2 of built surface can be reduced up to 15.94% compared to the use of traditional brick partitions. In addition, a model describing the accumulation of CDW throughout the project duration is proposed. This model states that CDW mainly accumulates in the middle stages of the project. This study allows an estimation of the amount of CDW to be generated in a building construction site, helping to plan the number and size of containers required at any moment of the construction process, as well as the space required for a proper CDW management.  相似文献   

2.
Construction and demolition wastes (CDW) have increasingly serious problems in environmental, social, and economic realms. There is no coherent framework for utilization of these wastes which are disposed both legally and illegally. This harms the environment, contributes to the increase of energy consumption, and depletes finite landfills resources. The aim of this paper is to evaluate the impacts of two alternatives for the management of CDW, recycling and disposing. The evaluation is carried out through developing a dynamic model with aid STELLA software by conducting the following steps: (1) quantifying the total cost incurred to mitigate the impacts of CDW landfills and uncollected waste on the environment and human health; (2) quantifying the total avoided emissions and saved energy by recycling waste; (3) estimating total external cost saved by recycling waste and; (4) providing a decision support tool that helps in re-thinking about waste disposal. The proposed evaluation methodology allows activating the stringent regulations that restrict waste disposal and developing incentives to encourage constructors to recycle their wastes. The research findings show that recycling CDW leads to significant reductions in emissions, energy use, global warming potential (GWP), and conserves landfills space when compared to disposal of wastes in landfills. Furthermore, the cost of mitigating the impact of disposal is extremely high. Therefore, it is necessary to recycle construction and demolition wastes.  相似文献   

3.
In this paper, the implementation of effective waste management practices in construction projects and sites is analyzed, using data from a survey answered by 74 Spanish construction companies based in Catalonia. Most commonly implemented practices were found to be on-site cleanliness and order, correct storage of raw materials, and prioritization of the nearest authorized waste managers. The least widespread practices were the use of a mobile crusher on site, the creation of individualized drawings for each construction site, and the dissemination of the contents of the waste management plan to all workers, to help them to meet its requirements. Waste regulations for construction and demolition, and the corresponding construction waste management facilities, were designed before the recession in the Spanish construction sector. Current waste generation rates are still below predicted levels, and the infrastructure was designed for five times more waste generation. Even so, the percentage of reused and recycled waste currently amounts to 43%. Survey respondents highlighted various instruments and measures that would make the management of construction and demolition waste more sustainable. Most of the opportunities identified by construction firms are within the scope of government and related to a combined system of bonus and penalties and the establishment of environmental awareness and training programmes for all the stakeholders. Within the scope of authorized waste managers, firms suggested improvements such as the standardization of fees, a reduction of the time until the issue of waste management certificates, a higher number of inspections, and a change in the current model of a few large construction waste management facilities. This research is useful to better understand the current status of construction and demolition waste management in construction projects and sites. Thus, the results of this research will guide policy makers and relevant stakeholders such as contractors, clients, architects and engineers to achieve the EU target of recovering 70% of construction and demolition waste in 2020. In this sense, reliable information can help governments and professional associations to set future C&D waste management regulations, training programmes and dissemination tools, inspections, etc.  相似文献   

4.

Due to the complex character of environmental issues there has been a call for change towards integration and co-operation on the development and environmental management scene. This holds true at all levels of society, from the global to the local. Due to cultural differences between different professions in municipalities, it may be hard to reach co-operation between different actors in municipal environmental management (MEM). Based on the present situation in Sweden in general and the municipality of Västera § s in particular, this paper discusses how co-operation in MEM may be promoted by the adoption of an environmental management system (EMS) in an entire municipality. Results from the study suggest that municipality-wide implementation of EMSs may help to bridge professional culture and language gaps. An EMS may provide the basis of a formal network that functions as a common platform and structure for environment-related discussion and work in different municipal authorities and companies, and thereby facilitate communication and co-operation among the actors in MEM.  相似文献   

5.
As widely recognised by EU legislation, Life Cycle Thinking (LCT) is a viable approach to support sound waste management choices. In this context, the Institute for Environment and Sustainability (IES) of the European Commission Joint Research Centre (JRC) has lead the development of macro-level, life cycle based waste management indicators to quantify and monitor the potential environmental impacts, benefits, and improvements associated with the management of a number of selected waste streams generated and treated in Europe.The waste management indicators developed make use of a combination of macro statistical waste management data combined with emissions/resource life cycle data for the different elements of the waste treatment chain. Indicators were initially calculated for the entire European Union (EU-27) and for Germany, covering several waste streams and a broad range of environmental impact categories.An indicator developed for a given waste stream captures the potential environmental impact associated with the generation and management of that waste stream. The entire waste management chain is considered, i.e. from generation to final treatment/disposal. Therefore, system boundaries for the selected waste streams include also the treatment or recycling of secondary waste (e.g. bottom ash from the incineration of household waste), and secondary products (e.g. recovered paper), as well as energy recovery.The experiences from the development of these life cycle based waste management indicators suggest that more detailed and quality-assured waste statistics are needed, especially covering the many different treatment operations and options. Also, it would be beneficial if waste statistics had a higher disaggregation level of waste categories, as well as more detailed information about waste composition. A further development of the indicators should include an increased number of waste streams, as well as calculation of the results for all Member States.  相似文献   

6.
The increasing construction and demolition (C&D) waste causes both cost inefficiency and environmental pollution. Many countries have developed regulations to minimize C&D waste. Implementation of these regulations requires an understanding of the magnitude and material composition of waste stream. Construction waste generation index is a useful tool for estimating the amount of construction waste and can be used as a benchmark to enhance the sustainable performance of construction industry. This paper presents a model for quantifying waste generation per gross floor area (WGA) based on mass balance principle for building construction in China. WGAs for major types of material are estimated using purchased amount of major materials and their material waste rate (MWR). The WGA for minor quantities of materials is estimated together as a percentage of total construction waste. The model is applied to a newly constructed residential building in Shenzhen city of South China. The WGA of this project is 40.7 kg/m2, and concrete waste is the largest contributor to the index. Comparisons with transportation records in site, empirical index in China and data in other economies reveal that the proposed model is valid and practical. The proposed model can be used to setup a benchmark WGA for Chinese construction industry by carrying out large-scale investigations in the future.  相似文献   

7.
In work, we compared two models for dealing with urban solid waste in Brazil, namely, management by contract and management by public–private partnership. Management by contract, which is widely used by the public sector (municipalities) for urban solid waste collection and disposal and for acquiring goods and services for periods not greater than 60 months, is governed by Federal Law 8.666/93. Management by public–private partnership is governed by Federal Law 11.079/04 for contracts worth more than US$11,000,000 and involves costs for the private partner and public partner. The financial return for the private partner must be clearly delineated and the contract should last from 5 to 35 years. Management by public–private partnership that involves the management of municipal solid waste is very recent in Brazil. For this reason, the comparison between the two forms of management of municipal solid waste (management by contract and management by public–private partnership) described in this work is unprecedented in this country. Both of these models are used in the municipality of São Bernardo do Campo in the State of São Paulo, Brazil. For this study, information was gathered through semi-structured interviews with public works managers in São Bernardo do Campo, with members of an Association of Recyclable Material Collectors and with managers of a company contracted by the São Bernardo do Campo city hall, and also by researching public documents provided by the city hall. The interviews with the managers of the municipality of São Bernardo do Campo, the Association and the company were held in the headquarters of each institution. The documents analyzed, such as the plan for dealing with municipal solid waste, contracts and bids were made available electronically. Analysis of the results indicated that management by a public–private partnership was more advantageous for dealing with urban solid waste than management by contract since the former provided a strong selective collection program, reduced the amount of solid waste sent to sanitary embankments, led to the recovery an area of land previously degraded by the incorrect disposal of urban solid waste and stimulated the installation of an energy recovery unit.  相似文献   

8.
Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.  相似文献   

9.
Lapland is one of the most attractive nature-tourism areas in Europe, and tourism is vital for local economy. However, recreational tourist activities such as skiing, hiking and horse riding deteriorate the unique and vulnerable nature of Northern Finland. Erosion and wearing of tourist areas negatively affects biodiversity and ecosystem services and reduce the attractiveness of the region. Tourism is also the source of other environmental disturbances such as wastes. Currently, in Lapland, the prevalent waste treatment method is disposal, and wastes are transported over long distances due to lack of recipient facilities for waste management. The suggestion for sustainable waste management Scenario presented in this paper is to find a synergistic solution to both of these problems, by local treatment of bio-waste in an anaerobic digestor and utilization of digestate to revegetate eroded land. It is proposed that bio-waste is co-digested with sewage sludge and offal from slaughterhouses in Ylläs in the municipality of Kolari. An estimated 500–1000 t of digestate could be produced and used in tourist areas annually. Experiences from existing seasonal bio-waste collection schemes and interviews of local tourist enterprises and tourists indicate that there is willingness to extend the source separation of wastes. Assessment of the digestion Scenario suggests that economic costs of investment could be offset by avoided costs and by additional environmental and social benefits. It is concluded that this zero waste approach could lead to an improved image of Lapland as a sustainable tourist destination.  相似文献   

10.
The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste treatment, has great advantages, particularly in its low impact on the environment. However, there is a large increase in acidification.  相似文献   

11.
Several alternatives exist for handling of individual waste fractions, including recycling, incineration and landfilling. From an environmental point of view, the latter is commonly considered as the least desirable option. Many studies based on life-cycle assessment (LCA) highlight the environmental benefits offered by incineration and especially by recycling. However, the landfilling option is often approached unjustly in these studies, maybe disregarding the remarkable technological improvements that landfills have undergone in the last decades in many parts of the world.This study, by means of LCA-modelling, aims at comparing the environmental performance of three major management options (landfilling, recycling and incineration or composting) for a number of individual waste fractions. The landfilling option is here approached comprehensively, accounting for all technical and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable with composting (for “organics”) and incineration (for “recyclable paper”). This however requires high degree of control over gas and leachate emissions, high gas collection efficiency and extensive gas utilization at the landfill. For the other waste fractions, recycling and incineration are favourable, although specific emissions of a variety of toxic compounds (VOCs, PAHs, NOx, heavy metals, etc.) may significantly worsen their environmental performance.  相似文献   

12.
Economic instrument is indubitably perceived as effective for encouraging or forcing contractors to conduct environmentally friendly construction practices. Previous studies in relation to this topic mainly put emphasis on economic analysis of construction and demolition (C&D) waste management from a static point of view, which failed to consider its dynamics nature by integrating all essential activities throughout the waste chain. This paper is thus intended to highlight the dynamics and interrelationships of C&D waste management practices and analyze the cost-benefit of this process using a system dynamics approach. Data related to concrete and aggregate of a construction project in Shenzhen was collected for the application of the proposed model. The findings reveal that net benefits from conducting C&D waste management will occur, but a higher landfill charge will lead to a higher net benefit, as well as an earlier realization of the net benefit. In addition, the general public under a higher landfill charge will suffer from a higher environmental cost caused by illegal dumping. The simulation results also suggest that current regulation in Shenzhen should be promoted to facilitate a dramatic increase in net benefit from the implementation of C&D waste management. This research is of value in facilitating better understanding on the dynamics of C&D waste management activities throughout the waste chain, as well as providing a tool for simulating the cost-benefit of C&D waste management practices over the project duration.  相似文献   

13.
Life cycle assessment (LCA) and life cycle costing (LCC) are well-established methods used for many years in many countries for system analysis of waste management. According to standard LCA procedure the assessment should include improvement analysis, in many cases this is performed by simple sensitivity analyses. An obstacle to perform more thorough sensitivity analyses is that it is hard to distinguish input data important to the results, i.e. key parameters. This paper further elaborates sensitivity analyses performed in an environmental system analysis for a hypothetical Swedish municipality. In this paper, the method to identify and test input data that can be categorised as potential key parameters is described. The method and the results from computer simulations of the identified parameters are presented, and some conclusions are drawn regarding the robustness of the results for environmental impact from municipal solid waste management. The major conclusion is that the results are robust. Changes in results, when changing the preconditions, are often small and the changes observed do not lead to new conclusions; i.e., a change of ranking order between treatment options.  相似文献   

14.
15.
Indicators and indices are important tools that assist decision makers to formulate and implement plans for management at local, national and international levels. Four indicators for hazardous waste management are described that have recently been adopted within the United Nations framework of Indicators of Sustainable Development. Although these four indicators will be useful tools, the need for a broader range of policy-relevant qualitative and quantitative indicators, proxy indicators and indices is outlined. The argument is advanced that in order for all nations to better manage the range of hazardous waste issues, including waste generation, export/import and disposal, a set of innovative indicators and indices is required. Useful indicators and indices are described that could be used to link and quantify likely environmental, ecosystem and health impacts and risks especially from hazardous waste disposal. Indicators are also suggested that could be used to illustrate the shift in industrial strategy away from end-of-pipe processes towards waste recycling, cleaner production and integrated life-cycle analysis. It was concluded that until the lack of reliable and harmonized data on hazardous waste is addressed, indicator development and use by national and international decision makers cannot readily be implemented.  相似文献   

16.
2015年7月,国务院印发《关于积极推进"互联网+"行动的指导意见》,鼓励利用物联网、大数据开展信息采集、数据分析、流向监测,跟踪废物流向,创新再生资源回收模式。我国固体废物种类多、数量大,部分废物具有一定的综合利用价值。从环境风险角度来看,需要关注固体废物生产、转移、利用、处置等多个环节,一直是环境管理的难点。但以大数据和云计算为代表的新技术为推动固体废物有效利用、提升环境风险防控能力提供了可能。文章介绍了新加坡利用大数据关联模型分析技术开展共生产业园区规划和建设,以及江苏省利用大数据和物联网技术开展危险废物转移动态监管的案例,分析了大数据应用在固体废物管理方面的优势和存在的挑战,为固体废物管理大数据建设提出了初步设想。未来固体废物大数据的建设应围绕《土壤污染防治行动计划》,首先要服务社会,实现数据共享和信息公开;其次要服务于日常管理,固体废物管理部门可以通过大数据应用辅助决策,落实简政放权,实现智慧管理;再次要服务于环境应急,通过对固体废物全生命周期的数据实时采集和动态分析,整合应急资源,服务应急救援。  相似文献   

17.
The accelerating pace of waste generation from used electrical and electronic equipment is of growing global concern. Within this waste stream, computer hardware is quite significant in terms of both volume and risk to the environment because of the hazardous materials within it. The waste management hierarchy of prevention, reuse, recycle, treatment and disposal in landfill is accepted as a universal guideline for waste management. The contemporary concept of integrated solid waste management is very complex comprising of not only the environmental aspects or the technical aspects of the waste management hierarchy, but also incorporating economic, institutional, perceived risk and social issues in the context of complete life cycle of waste. Moreover, when to shift from one stage of hierarchy to another, is an involved decision warranting inclusion of several case specific issues. This paper presents a life cycle based multi-objective model that can help decision makers in integrated waste management. The proposed model has been applied to a case study of computer waste scenario in Delhi, India, which apart from having computer waste from its native population receives large quantities of imported second hand computers. The model has been used to evaluate management cost and reuse time span or life cycle of various streams of computer waste for different objectives of economy, perceived risk and environmental impact. The model results for different scenarios of waste generation have been analyzed to understand the tradeoffs between cost, perceived risk and environmental impact. The optimum life cycle of a computer desktop was observed to be shorter by 25% while optimizing cost than while optimizing impact to the environment or risk perceived by public. Proposed integrated approach can be useful for determining the optimum life cycle of computer waste, as well as optimum configuration of waste management facilities, for urban centers where computer waste related issues are of growing concern.  相似文献   

18.
This paper computes and analyses, for the first time, environmental efficiencies in waste generation of 116 European regions in NUTS 2 level in five European countries over the period of 2008–2010. For this reason, different data envelopment analysis (DEA) model formulations are used for modeling the pollutant in the form of waste generation as a regular output and as a regular input. In the latter case, we also use the notion of eco-efficiency. The empirical findings reveal environmental inefficiencies among the regions, indicating the lack of a uniform regional environmental policy among the European countries. This finding is observed not only for regions between different countries but also among the regions within countries, implying the need for implementation of unified appropriate municipal environmental policies in waste management.  相似文献   

19.
The accelerating pace of waste generation from used electrical and electronic equipment is of growing global concern. Within this waste stream, computer hardware is quite significant in terms of both volume and risk to the environment because of the hazardous materials within it. The waste management hierarchy of prevention, reuse, recycle, treatment and disposal in landfill is accepted as a universal guideline for waste management. The contemporary concept of integrated solid waste management is very complex comprising of not only the environmental aspects or the technical aspects of the waste management hierarchy, but also incorporating economic, institutional, perceived risk and social issues in the context of complete life cycle of waste. Moreover, when to shift from one stage of hierarchy to another, is an involved decision warranting inclusion of several case specific issues. This paper presents a life cycle based multi-objective model that can help decision makers in integrated waste management. The proposed model has been applied to a case study of computer waste scenario in Delhi, India, which apart from having computer waste from its native population receives large quantities of imported second hand computers. The model has been used to evaluate management cost and reuse time span or life cycle of various streams of computer waste for different objectives of economy, perceived risk and environmental impact. The model results for different scenarios of waste generation have been analyzed to understand the tradeoffs between cost, perceived risk and environmental impact. The optimum life cycle of a computer desktop was observed to be shorter by 25% while optimizing cost than while optimizing impact to the environment or risk perceived by public. Proposed integrated approach can be useful for determining the optimum life cycle of computer waste, as well as optimum configuration of waste management facilities, for urban centers where computer waste related issues are of growing concern.  相似文献   

20.
《Resources Policy》2002,28(1-2):39-47
Material flows of concrete from construction and demolition (C&D) waste in Taiwan have grown considerably over the last two decades, Hsiao et al. (2001). This increased flow puts pressure on limited national disposal capacity and has indirectly caused ecological damage to domestic riparian zones used as sources of natural aggregate. Using existing statistics and literature sources for C&D waste generation in Taiwan we have developed a dynamic model of domestic material flows of concrete waste and employ statistical analyses to obtain projections of future material flows. Our major findings are: (1) Taiwan’s rate of waste concrete generation in 2001 for the residential and commercial construction industry was approximately 2.4 Million Metric Tons (MMT) per year, averaging 0.11 metric tons of waste concrete generated annually by each Taiwanese; (2) Around the year 2009, the national rate will more than triple to exceed the spike in C&D concrete waste generation that occurred after the Chi Chi earthquake 9/21/99, 8.5 MMT. (3) Aside from pilot-scale development of waste concrete utilization technology, nationwide recycling rates remain negligible. Without resource recovery, the volume of C&D waste generation by 2009 is projected to occupy nearly 7% of all existing and planned domestic landfill capacity. A target is established to raise resource recovery rates for waste concrete to 50% by 2005 and a 100% nationwide recycling rate by 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号