首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The settlement behaviour of planula larvae and their development to young polyps was investigated in laboratory experiments in five scyphozoan species [Aurelia aurita (L.), Cyanea capillata (L.), Cyanea lamarckii Péron and Leseur, Chrysaora hysoscella (L.), and Rhizostoma octopus (L.)]. The undersides of settling plates were strongly preferred for settlement. Shells, the only natural substrate type offered, were less attractive than artificial substrates (concrete, machined wood, polyethylene, and glass). The advantages of colonization of substrate undersides for survival and reproduction of polyps are discussed. It is supposed that the increase of artificial substrates in our seas, due to marine litter pollution and submarine building activities, enlarge the areas of distribution of scyphozoan polyps, in coastal as well as in off-shore regions. Subsequent increases in ephyra production by polyps are probably one reason for the increase in mass occurrences of jellyfish recognized worldwide during the last few decades. It is suggested that the early developmental stages in the cnidarian life cycle, the planula larvae, and the polyps, play the key role in the development of jellyfish outbursts.  相似文献   

2.
Accurate species identification of decapod crustacean larvae is required to understand their population distributions, life cycle dynamics and interactions with their habitats. Analysis of plankton samples using morphological taxonomic methods and microscopy is time-consuming, requires highly skilled and trained operatives and may often be inaccurate. As complementary tools to classical identification methods, recent work has focused on the development of molecular approaches and shows their feasibility for species-specific identification. This study has developed real-time PCR assays utilising species-specific Taqman® probes designed in the cytochrome oxidase I (COI) gene of Liocarcinus depurator, Necora puber, Carcinus maenas and Cancer pagurus. Our study then employed the probe and primers designed for L. depurator to obtain accurate identification and relative abundance estimates of L. depurator larvae in plankton samples collected between March 2005 and October 2006. Ranges of larval abundances were derived from a standard curve created from plankton samples spiked with a known number of larvae reared in the laboratory. Inhibition of the PCR reaction was shown to be an important factor and our results suggested that 0.1 ng of DNA as template provided accurate identification and avoided inhibition. Real-time PCR was shown to provide accurate species identification on unsorted plankton samples and could be suitable for the estimation of larval abundances in the plankton, although more work must be done to improve the accuracy of those estimations.  相似文献   

3.
During the years 1982 to 1986, the life cycles and population dynamics of three scyphozoans, Aurelia aurita (L.), Cyanea capillata (L.) and C. lamarckii (Person and Lesueur), were studied in the Gullmar Fjord on the Swedish west coast. The settling of planulae, strobilation of scyphistomae and release of ephyrae were followed on ceramic settling plates in the laboratory and in the field. Weekly to bi-weekly hauls with Bongo nets were used to study the abundance of ephyrae and medusae. The results show great differences in the life cycles and ecology of the three species. A. aurita utilizes the best season for scyphistoma growth (August to September) and strobilates during the highest zooplankton abundance in October. C. capillata strobilates during the spring (March to May), and the abundance of C. capillata medusae is more dependent on immigration from the North Sea than A. aurita. C. lamarckii does not reproduce at all in the Gullmar Fjord and is totally dependent on immigration from the North Sea. The possibility of interspecific competition between A. aurita and C. capillata is discussed. A preliminary experiment showed that scyphistomae of A. aurita eat planula larvae of C. capillata during the autumn.  相似文献   

4.
Baltic sprat (Sprattus sprattus balticus S.) is a key species in the pelagic ecosystem of the Baltic Sea. Most stocks of small pelagic species are characterized by natural, fishery-independent fluctuations, which make it difficult to predict stock development. Baltic sprat recruitment is highly variable, which can partly be related to climate-driven variability in hydrographic conditions. Results from experimental studies and field observations demonstrate that a number of important life history traits of sprat are affected by temperature, especially the survival and growth of early life stages. Projected climate-driven warming may impact important processes affecting various life stages of sprat, from survival and development during the egg and larval phases to the reproductive output of adults. This study presents a stage-based matrix model approach to simulate sprat population dynamics in relation to different climate change scenarios. Data obtained from experimental studies and field observations were used to estimate and incorporate stage-specific growth and survival rates into the model. Model-based estimates of population growth rate were affected most by changes in the transition probability of the feeding larval stage at all temperatures (+0, +2, +4, +6?°C). The maximum increase in population growth rate was expected when ambient temperature was elevated by 4?°C. Coupling our stage-based model and more complex, biophysical individual-based models may reveal the processes driving these expected climate-driven changes in Baltic Sea sprat population dynamics.  相似文献   

5.
Globally, many commercial bivalve populations have declined in recent decades. In addition to overharvesting and habitat loss, the increasing frequency and intensity of harmful algal blooms (HABs) are likely to contribute to bivalve losses, particularly in cases where blooms negatively impact larval stages. This paper reports on the lethal effects of clonal cultures and blooms of Cochlodinium polykrikoides from the US Atlantic coast on the larvae of three species of commercially and ecologically valuable bivalves: the Eastern oyster (Crassostrea virginica), the bay scallop (Argopecten irradians), and the Northern quahog (hard clam; Mercenaria mercenaria). Both cultures and blooms of C. polykrikoides were highly toxic to all three species of bivalve larvae causing 80–100% mortality during 24- to 72-h exposures at concentrations of 1–2 × 103 cells ml−1. Toxicity was dependent on cell densities, growth stage of C. polykrikoides (i.e. cultures in exponential stage growth were more toxic than later stages), exposure time of larvae to cells (i.e. longer exposure caused higher mortality), the age of larvae (i.e. younger larvae were more sensitive), and the relative abundance of C. polykrikoides (i.e. the presence of other microalgae decreased toxicity). Free radical-scavenging enzymes (peroxidase and catalase) and the removal of C. polykrikoides cells (i.e. culture filtrate) significantly increased larval survival suggesting toxicity is maximized by contact with live cells and may involve labile toxins bound by these compounds including e.g. reactive oxygen species. The toxicity of C. polykrikoides to bivalve larvae was generally more severe than other HAB species (e.g. Karenia brevis, Karlodinium veneficum, Alexandrium tamarense, Prorocentrum minimum). Since the bivalves in this study spawn in the months when C. polykrikoides blooms on the east coast of North America, these results suggest that these blooms may have detrimental effects on efforts to restore these already diminished populations.  相似文献   

6.
Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa)   总被引:1,自引:0,他引:1  
We studied growth of newly released Aurelia aurita ephyra larvae fed five different food types, including a large-sized copepod, a phytoflagellate, and suspended POM (particulate organic matter) made from bivalve meat. Experiments were run at saturated food concentration in two different temperatures over 10 days. The effect of small differences in temperature was inconsistent and interacted with the effect of food type, which, in turn, was highly significant. A low average growth rate (4-9% day-1) was shown when feeding on the large-sized copepod Calanus finmarchicus (80 µg AFDW individual-1), in spite of an extremely high daily ration of up to 1500% of body AFDW. When feeding on the cryptophyte Rhodomonas baltica (ca. 8 µm cell diameter), the ephyrae showed an average growth rate over the 10 day experiment of 7-11%, but with a considerably higher growth rate during the first days. Suspended POM generated an average growth rate of 7-9% day-1, whereas fresh bivalve meat, manually placed into the stomach of the ephyra, gave an average growth rate of 12-14% day-1. Artemia nauplii (ca. 3 µg AFDW individual-1), used as a general reference, resulted in higher growth rates than any of the other food types (17-31% day-1). We conclude that A. aurita ephyrae can capture and feed on phytoplankton, large copepods, and POM; that phytoplankton might be of nutritive significance early in development; and that the high quantity of large-sized copepods ingested is inefficiently converted to growth during early development. POM is a potential food source because of the ability of the ephyrae to encounter and ingest it, although concentration, size distribution, and nutritional composition of natural POM probably constrain its effect on growth.  相似文献   

7.
The importance life history plays in understanding population dynamics and the functional roles of species for predicting climate change scenarios are well established. Yet, in the marine environment, the complete life history is unknown for many species, especially the link between morphologically and ecologically distinct planktonic larvae, and their corresponding benthic adult forms. Integration of meroplankton abundance, benthic adult species, larval morphology, and molecular data was employed to unravel the complete life history of Polygordius, a dominant polychaete in sandy shelf sediments of the Mid-Atlantic Bight. Polygordius species are unusual, having two distinct planktonic larval forms: an exolarva and an endolarva. Extensive sampling in the southern Mid-Atlantic Bight with careful preservation of meroplankton (2006–2007) revealed the identity of multiple stages of exo- and endolarvae, and their spatial, seasonal, and vertical distribution. Molecular and morphological evidence indicated exolarvae are Polygordius jouinae and endolarva are an undescribed species. Structure and development of these larvae differed greatly. P. jouinae exolarvae were found off Delaware Bay to North Carolina. At some stations, they were abundant, with densities up to 4,013 m?3, comprising >90 % of the total meroplankton. Exolarvae spent up to a month in the plankton starting in March/May depending on year, settlement began in July when larvae were at least 2 mm in length, and by October were no longer observed in the plankton. These findings are consistent with the distribution patterns and life cycle known for adults. This is the first report of endolarvae north of Cape Hatteras.  相似文献   

8.
The life cycle of Lychnorhiza lucerna (Scyphozoa: Rhizostomeae) and the settlement preferences of its larvae were studied using laboratory-based rearing experiments. Mature medusae of L. lucerna were collected from the beach of the Río de la Plata estuary, Argentina. This species displayed the typical metagenetic, (i.e. medusoid and polypoid), life cycle reported for other rhizostomes. The fertilized eggs developed into motile and short lived planulae. The majority of planulae settled on the air-water interface (p < 0.001). Of those that settled on the settlement plates provided, no significant differences were observed between styrene slides, glass slides and shells of the bivalve Mactra isabelleana (p > 0.05). No planulae settled on stones. Several hours after planulae settled, they metamorphosed into sessile four-tentacled scyphistomae. Most scyphistomae attached onto the air-water interface. At 19–22°C, the scyphistomae grew up to 22 tentacles and reached 1,500 μm height. The scyphistomae increased their numbers by means of formation of podocysts from which new polyps emerged and strobilated. Strobilation occurred 46 days after settlement. Only polydisk strobilation was observed and each strobila always produced three ephyrae. After releasing ephyrae, strobilae returned to normal scyphistomae and were capable of repeating strobilation. A single founder polyp was estimated to produce up to 60 ephyrae over 4 months. Ephyrae developed into metephyrae 15 days after release at 19–22°C. In this paper we describe the morphological and some behavioural features of L. lucerna in the polypoid and early medusoid stages.  相似文献   

9.
10.
Capture of zooplankton by scleractinian corals has been noted for several species, yet quantitative information on rates of capture and differential capture by prey taxon has been lacking. We used field enclosures to examine prey capture for two coral species,Madracis mirabilis (Duchassaing and Michelotti) andMontastrea cavernosa (Linnaeus), on the north coast of Jamaica (Discovery Bay) in November 1989, February and March 1990, and January 1992.M. mirabilis has small polyps and a branching colony morphology (high surface/volume ratio), whereasM. cavernosa has large polyps and mounding colonies (low surface/volume ratio). Corals were isolated front potential prey, then were introduced into enclosures with enhanced zooplankton concentrations for 15- to 20-min feeding periods. Corals were fixed immediately after the experiment to prevent digestion, and coelenteron contents were examined for captured zooplankton. Plankton pumps were used to sample ambient zooplankton in the enclosures near the end of each run. Selectivity and capture rates were calculated for each prey taxon in each experiment; both indices were high for relatively uncommon large prey, and low for copepods, which were often the most common items in the plankton. Sizes of zooplankton captured by both species were generally larger than those available considering all prey taxa combined, but were almost the same for both coral species, even though the corals' polyp sizes are very different. This occurred primarily because small copepods, with low capture rates, dominated most plankton samples. For specific prey species, or group of species, there were few significant differences in size between the prey available and the prey captured.M. mirabilis, with small polyps, also captured far more prey per unit coral biomass than didM. cavernosa, with much larger polyps. We hypothesize that the large differences in capture rate of prey taxa are related to escape or avoidance behavior by those potential prey, and to the mechanics of capture, rather than to any selectivity by the corals.  相似文献   

11.
The annual cycle of abundance and distribution of the scyphozoan medusae Aurelia aurita, Cyanea lamarckii, C. capillata and Chrysaora hysoscella were studied in the southern North Sea in 2004 and 2005. Three different patterns of seasonal occurrence of medusae were distinguished: (1) the early occurring C. lamarckii (February–August), (2) C. capillata and A. aurita (April–August) and (3) the late appearing C. hysoscella (July/August–September). Cyanea lamarckii was the most frequently encountered species in this study; its highest mean abundance was 1.8 ± 2.7 ind. 100 m−3. The prey spectra of C. lamarckii, C. capillata and C. hysoscella contained several copepod and other crustacean species and thus make them potential competitors with fish larvae. Medusae in this study also consumed fish eggs and larvae, including clupeids, in all months analysed. Although peak spawning of sprat (Sprattus sprattus) coincides with the maximum abundance of medusae (May–June) the relative low abundance of all medusae species in this study makes jellyfish predation unlikely to be a factor controlling sprat recruitment in the time frame investigated.  相似文献   

12.
Quantitative polymerase chain reaction (qPCR) for the identification and quantification of microbes has become a common tool for the study of harmful algal blooms (HABs). We developed a qPCR method for the diatom genus Pseudo-nitzschia. Several species of this genus form toxic blooms through the production of the neurotoxin domoic acid (DA). Outbreaks of toxicity attributed to DA along the US west coast have caused sickness and death of marine mammals and seabirds through food web contamination. The method developed here quantifies Pseudo-nitzschia spp. at low abundances in natural samples, thereby, providing a method to improve our understanding of the environmental conditions leading to blooms of these species. This has been accomplished previously by techniques for identification and quantification that are slow and laborious compared to qPCR. The approach was successfully tested and validated using eight species of Pseudo-nitzschia and 33 non-target organisms and employed to follow local bloom dynamics.  相似文献   

13.
14.
Scyphistomae of Cassiopea andromeda Forskål, 1775 containing symbiontic zooxanthellae did not develop medusae at a constant temperature of 20°C, but monodisc strobilation was initiated after transfer of the polyps to 24°C. After release of the ephyrae and regeneration of the hypostome and tentacular region, the recovered polyps either produced vegetative buds or entered a new strobilation phase. Formation of motile, planula-like buds was not found to be indicative of unfavourable environmental conditions. Intensity of budding was positively correlated with available food and with increase of temperature. Budding was negatively correlated with the number of polyps maintained per dish and with the conditioning of the sea water. Under optimal feeding and temperature conditions, polyps could simultaneously produce chains of buds at 2 to 4 budding regions. Settlement and development of buds into scyphistomae was suppressed in pasteurized sea water and in pasteurized sea water containing antibiotics, but polyps developed from buds in the presence of algal material taken from the aquarium, debris or egg shells of Artemia salina, or on glass slides which had been incubated in used A. salina culture medium. Several species of marine bacteria were detected after staining these slides. One, a Gramnegative coccoid rod, which was identified as a nonpathogenic Vibrio species, was isolated, cultivated as a pure strain, and was proved to induce the development of C. andromeda buds into polyps. Millipore filter-plates coated with Vibrio sp. cells grown in suspension culture were ineffectual, but diluted filtrate initiated polyp morphogenesis. The inducing factor is obviously not a constituent of the bacterial cell surface, but is a product of growing Vibrio sp. cells released into the medium. This product was found to be relatively heat-stable and dialyzable. As to the basic mechanism involved in the induction of polyp formation, it is suggested that the inducing factor (s) acts bimodally by inducing pedal disc development and by eliminating a head inhibitor originating from the basal end of the bud. The life history, and various aspects of medusa-formation and of vegetative reproduction in scyphozoans are reviewed and discussed with particular reference to rhizostome species. Special attention has been paid to some reports of larval metamorphosis controlled by marine bacteria.  相似文献   

15.
Laminated microbial mats from a sandy beach plain were grown in water-saturated pots in a glass house for six months and then used to assess their effect on the establishment of juveniles of three plant species representing different successional stages in dune slack development. The selected species wereSamolus valerandi, characteristic of pioneer stages,Calamagrostis epigejos, characteristic of more productive, late successional stages, andJuncus alpinoarticulatus, which occurs in a wide range of successional stages. Juveniles of all three species that were placed on top of intact living microbial mats established themselves in the mat.C. epigejos andJ. alpinoarticulatus survived for several weeks but later on their numbers decreased and the total biomass production of the species after six months was poor.S. valerandi, in contrast, grew profusely in intact microbial and algal mats. Heating of the microbial mat by heat sterilization, prior to the experiment, did not improve the performance of the species. When the juveniles were planted in the microbial mats after breaking the surface of the mat, the survival of juveniles ofC. epigejos andJ. alpinoarticulatus was much higher and so was the biomass of surviving plants after six months. Planting ofSamolus in the mats had some positive effect on the survival percentage of the juveniles, but not on the total biomass at the end of the experiment. Slightly lower water tables had a negative effect on the performance of all species. Measurements of the pH in the pots revealed that there were no significant differences in the top layer. Sulphide concentrations were very low in all the pots where juveniles had been planted and also in the pots withS. valerandi. Relatively high concentrations (30–50 μmol/l) were found in pots with poor growth ofJuncus andCalamagrostis plants. These values may exceed toxic levels for these species. Although oxygen concentrations in the pots were generally low, no relation existed between plant biomass and oxygen content, indicating that plant growth was not primarily limited by oxygen stress. These experiments support the idea that microbial mats may assist in extending the life span of early pioneer stages during dune slack succession by inhibiting the growth of species of later successional stages.  相似文献   

16.
T. Morgan  A. Rogers 《Marine Biology》2001,139(5):967-973
The identification of larval marine invertebrates to species or even higher taxonomic levels by morphological examination is notoriously difficult. Many diagnostic features are absent or poorly formed at early stages in development. This is particularly true for the larvae of bivalve molluscs, for which a routine and accurate method of identification would prove valuable to both ecologists and fishery managers. A simple molecular genetic method to identify specifically larvae of the European oyster, Ostrea edulis L., 1758, is presented. The test is based on PCR amplification of highly species-specific microsatellite loci and is sensitive enough to register the presence of a single larval individual (~200 µm width) in a mixed sample of 20 mg wet weight plankton (approximately 250 larval animals). This work demonstrates that microsatellite loci can be used as highly sensitive and specific taxonomic indicators, for studies of planktonic larvae. Details of three novel microsatellite loci are also given for O. edulis, increasing the suite of molecular tools available for use in population genetic studies of this commercially important species.  相似文献   

17.
《Ecological modelling》1997,102(1):33-53
A population dynamics model was developed to simulate the effects of benthic macroalgae blooms (mostly Enteromorpha spp.) on the productivity of Cyathura carinata (Crustacea: Isopoda), a possible keystone species in the benthic communities of the Mondego estuary. The model describes C. carinata population dynamics, as well as the relationships between Enteromorpha biomass, Enteromorpha decaying rates, organic matter content in the sediments and detritus consumption by C. carinata, a detritic feeder. Model results support the idea that seasonal blooms of Enteromorpha determine a significant increase of organic matter content in the sediments, due to macroalgae decay, which initially contributes to enhance C. carinata consumption and growth rates, determining a significant increase in the biomass. Nevertheless, later, following the algae bloom, C. carinata biomass decreases, and reaches its lowest value, close to 0, when the algae crash. This effect is probably related with strong anoxic conditions, especially during night, due to high algal decomposition rates. In accordance with the model, migration of new individuals from adjacent areas must occur in order to recolonise the area affected by the algae bloom. Therefore, it seems reasonable to conclude that macroalgae blooms that are limited in space may favour C. carinata populations, but extensive blooms affecting the whole area of distribution of this species will determine its disappearance.  相似文献   

18.
Coralline algae (Corallinales, Rhodophyta) are predicted to be negatively impacted by near-future ocean acidification. The effect of low pH/high pCO2 on early life stages of Phymatolithon lenormandii (Areschoug) Adey was studied in a perturbation experiment. Several parameters including mortality, calcification (calcein staining) and development (growth and abnormalities) have been monitored for a month under experimental conditions ranging from pHT = 8.00 (pCO2 = 398 μatm) and pHT = 7.55 (pCO2 = 1,261 μatm). Our results demonstrate that survival and development of P. lenormandii early life stages can be impacted by small pH changes (ΔpH < ?0.1 pH unit). A negative impact of decreasing pH was observed including an increased mortality and a higher rate of abnormalities. Growth and calcification were still observed at the lowest pH (ΔpH = ?0.45). Growth rate was similar at all tested pH, but the maintenance of the skeleton under low pH was only possible through a persistent dynamic dissolution/calcification process, an energetically costly mechanism potentially draining resources from other vital processes.  相似文献   

19.
The body mass of Aurelia aurita ephyrae was better correlated with the diameter of the central disc than with the distance between opposite rhopaliae or distance between opposite lappet tips. Body dry weight (y, in μg) related to the disc diameter (x, in mm) through the equation y = 22.33 x 1.99. The exponent 1.99 was significantly lower than that for the medusa stage, indicating a tendency to grow in diameter rather than in weight through the ephyra stage. The average ash-free dry weight (AFDW) of ephyrae was 38.0% of the dry weight. The AFDW/diameter relationship was used to convert measured diameters to body AFDW and calculate succession in body mass, daily ration, daily growth rate and gross growth efficiency. Effects of temperature (6, 9.5, 12, 15 and 18 °C) and salinity (17.5, 22, 26, 30.5 and 35 PSU) on these parameters and feeding were studied at saturated prey concentration (222 Artemia nauplii l−1 initial concentration) by daily measurements over 10 d. There was a strong effect of temperature for total ingestion, growth rate, growth efficiency and final body mass of individual ephyrae, whereas the daily ration was not significantly different between the different temperatures. The experimental group kept at the highest temperature (18 °C) diverged the most, and ephyrae at this temperature ingested 2.7 times more and increased in weight 5.4 times more than at 6 °C. The average daily growth rate and gross growth efficiency of these ephyrae were 34.5% and 25.1%, respectively, significantly higher than at 6, 9.5 and 15 °C. Significant effects of salinity were shown for total ingestion, daily ration, daily growth rate and final weight, although only total ingestion and daily ration diverged sufficiently to show effects in a post-hoc test. This test showed that total ingestion was significantly different for all salinities except between 22 and 35 PSU and between 17.5 and 26 PSU. The daily ration for 35 PSU diverged from all other salinities, whereas none of the other salinities showed any significant differences. Thus, provided food in excess A. aurita can double its weight every 2 to 4 d, dependent on temperature and can therefore develop to the medusa stage in short time. Differences in environmental salinity in the range 17.5 to 35 PSU have little or no effect on growth rate and growth efficiency, whereas our results indicate that the full seawater salinity (35 PSU) causes significantly higher ingestion rate compared to lower salinities. Received: 11 January 1999 / Accepted: 11 May 1999  相似文献   

20.
Copepod nauplii are important in plankton food web dynamics, but limited information is available about their ecology due to methodological challenges. Reported here is a new molecular method that was developed, optimized, and tested in laboratory and field samples that uses quantitative PCR (qPCR) to identify and estimate the abundance of nauplii of the planktonic copepod, Parvocalanus crassirostris. The overall approach included collection of bulk zooplankton samples in the field, size fractionation to create artificial cohorts of relatively few developmental stages, obtaining DNA copy number for each size fraction by qPCR amplification of a target gene region, and estimation of the number of animals in each fraction through application of known DNA copy number across developmental stage. Method validation studies found that our qPCR-based approach has comparable accuracy to microscope-based counts of early developmental stages. Naupliar abundance estimates obtained using the two methods on cultured populations were similar; the regression of qPCR estimates on microscope-based counts resulted in a nearly 1:1 ratio (slope = 1.09). The qPCR-based method is superior to traditional identification and quantification methods for nauplii due to its higher taxonomic resolution, sensitive detection over a range of DNA quantities, and relatively high throughput sample processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号