首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodegradation of fluoranthene by soil fungi   总被引:1,自引:0,他引:1  
A selection of 39 strains of micromycetes known as good degraders of polychlorinated aromatic compounds, mostly isolated from soil and belonging to various taxonomic groups, have been investigated for fluoranthene degradation. Toxicity assays, first evaluated on solid medium MEA, have not shown any toxicity of fluoranthene (1-100 mg.L-1) towards fungi. Whereas, consumption assays on a solid synthetic medium showed a toxicity at 100 mg.L-1. The degradation of fluoranthene (10 mg.L-1) was then investigated in a liquid synthetic medium for 4 days and evaluated by HPLC. Among the 39 strains tested, 18 degraded fluoranthene at 60% or more. Zygomycetes appeared to be the most efficient group (mean degradation: 90%). Among 18 performant strains, 10 had not yet been reported in the literature: Sporormiella australis, Cryptococcus albidus, Cicinobolus cesatii, Pestalotia palmarum, beauveria alba, Aspergillus terreus. Cunninghamella blakesleeana, C. echinulata, Mortierella ramanniana and Rhizopus arrhizus. Fluoranthene adsorption on fungi was very low for the strains which degraded well fluoranthene (mean adsorption: 4%). Whereas, some strains adsorbed it much more such as Colletotrichum dematium (47%) and Penicillium italicum (43%).  相似文献   

2.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

3.
Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40m below surface (mbs) and divided into 12 sub-samples of 8-25cm length, and one sandy aquifer section from 19.20 to 19.53m depth divided into 7 sub-samples of 4-5cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93->16000/g) than in the upper half (4-71/g). One 50cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to >16000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10m unsaturated limestone was established, and calculations showed that a 30cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1m would substantially increase natural attenuation.  相似文献   

4.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

5.
This study investigates the fungal biodegradation of fluorene, a polycyclic aromatic hydrocarbon, in liquid medium and soil slurry. Fungal strains and cyclodextrins were used in order to degrade fluorene and optimize fluorene bioavailability and degradation in soil slurries. After a procedure of selection in solid and liquid media, maltosyl-cyclodextrin, a branched cyclodextrin was chosen. 47 fungal strains isolated from a contaminated site were tested for biodegradation. Results showed the greater efficiency of "adapted" fungi isolated from contaminated soil vs reference strains belonging to the collection of the laboratory. These assays allowed us to select the most efficient strain, Absidia cylindrospora, which was used in a bioaugmentation process. Bioaugmentation tests were performed in an artificially contaminated non-sterile soil. In the presence of A. cylindrospora, more than 90% of the fluorene was degraded within 288 h, while 576 h were necessary in the absence of fungal bioremediation. It also appeared that biodegradation was enhanced by amendment with previously selected maltosyl-cyclodextrin. The results of this study indicate that A. cylindrospora and maltosyl-cyclodextrin could be used successfully in fluorene bioremediation systems.  相似文献   

6.
Photolysis of PAHs in aqueous phase by UV irradiation.   总被引:9,自引:0,他引:9  
The photooxidation of polycyclic aromatic hydrocarbons (PAHs) was investigated in an aqueous ethanolic solution irradiated with a medium-pressure mercury lamp in laboratory photoreactors equipped with a quartz immersion well. Degradation photolysis of fluorene was more efficient than sensitized photolytic oxidation in the presence of TiO2 suspensions. Photolysis kinetics was dependent on molecular weight and the presence and type of substituents. During the photolytic degradation of fluorene and its derivatives, 9-fluorenone and its corresponding derivatives, which were more resistant to photolysis, were formed.  相似文献   

7.
The insecticide gamma-hexachlorocyclohexane (gamma-HCH or lindane), which has been extensively used for agricultural and medical purposes, presents high persistence and toxicity to the environment and low solubility. This study intends to assess the efficiency of an anaerobic reactor to degrade HCH isomers contained in soil slurry cultures. This study was developed in two phases: experiments in flasks to optimize the process parameters, and assessment of the slurry process in the anaerobic slurry reactor operated for an approximate period of a year. The influence of different environmental conditions was evaluated: the HCH concentration (25-100 mg HCH kg-1), the type of substrate (volatile fatty acids or starch), the sludge concentration (2-8 g VSS l-1) and the replacement of spiked soil to simulate a fed-batch operation (10-50%). The best results were obtained when the reactor was operated with a sludge concentration of 8 g VSS l-1, starch concentration of 2 g COD l-1 and soil replacements of 10-20%. Under these conditions, alpha- and gamma-HCH were completely degraded after 10d while nearly 90% beta- and delta-HCH were removed only after 50 d. According to the obtained results related to the total degradation of the HCH isomers and the degradation rates, especially high for alpha- and gamma-HCH, the anaerobic slurry reactor appears to be a good alternative for the degradation of the HCH isomers present in polluted soil.  相似文献   

8.
Biodegradation of pyrene by sediment fungi   总被引:17,自引:0,他引:17  
Micromycetes were isolated from PAHS-contaminated sediment and identified. They were investigated for pyrene degradation (10 mg l-1) in liquid synthetic medium for two days. Among the 41 strains isolated, 10 highly degraded pyrene (> 2.4 mg g-1 dry weight): two Zygomycetes (Mucor racemosus, M. racemosus var. sphaerosporus), 6 Deuteromycetes (Gliocladium virens, Penicillium simplicissimum, P. janthinellum, Phialophora alba, P. hoffmannii, Trichoderma harzianum), a Dematiaceae (Scopulariopsis brumptii) and a Sphaeropsidale (Coniothyrium fuckelii). Zygomycetes appeared as one of the most efficient taxonomic groups, especially with Mucor racemosus. Penicillium crustosum was the only strain that did not degrade pyrene. Among the 10 fungi which were performant for pyrene degradation, nine were not yet reported in the literature and showed a real value for PAH remediation.  相似文献   

9.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

10.
Eighteen fungal strains were tested in toxicity assays with surfactants in order to select surfactants and strains tolerant to surfactants for degradation assays. Two nonionic surfactants were used, an alkylphenol ethoxylate, Triton X-100, a sorbitan ester, Tween 80 and an anionic surfactant, sodium dodecyl sulfate. Solubilization and biodegradation tests were conducted in liquid medium batch; fluorene was quantified by HPLC. Results showed the enhancement of fluorene solubilization by the three surfactants, good tolerance of nonionic surfactants by the fungal strains and the enhancement of the biodegradation of fluorene by Doratomyces stemonitis (46-62%) and Penicillium chrysogenum (28-61%) in the presence of Tween 80 (0.324 mM) after 2 days.  相似文献   

11.
Chao WL  Cheng CY 《Chemosphere》2007,67(3):482-488
Four previously isolated di-butyl-phthalate (DBP) degraders were tested for their abilities to degrade di-(2-ethylhexyl) phthalate (DEHP). In aqueous medium supplemented with 100mg/l of DEHP, both isolate G1 and Rhodococcus rhodochrous G2 showed excellent degradative activity; in three days they were able to degrade more than 97% of the added DEHP. Rhodococcus rhodochrous G7 degraded 32.5% of the added DEHP and Corynebacterium nitrilophilus G11 showed the least amount of DEHP degradation. The addition of surfactant Brij 30 at 0.1x critical micelle concentration (2mg/l) significantly improved DEHP degradation by Rhodococcus rhodochrous G2 (more than 90% of the added DEHP was degraded within 24 hours), but slightly inhibited the degradation of DEHP by the isolate G1 and Rhodococcus rhodochrous G7. Based on the 16S rDNA sequence data, isolate G1 was identified as Gordonia polyisoprenivorans. Soil inhibited DEHP degradation by G. polyisoprenivorans G1; fourteen days after a second addition of DEHP, 11.5% of the total added DEHP (i.e., 243.4 microg/g soil) remained detectable. Changes in the bacterial community were monitored using denaturing gradient gel electrophoresis (DGGE) and respective dendrogram analysis. It is clear that DEHP and DEHP plus G. polyisoprenivorans G1 substantially affected the bacterial community structure in the soils. However, as the population of indigenous DEHP degraders increased in the DEPH-treated soil, its bacterial communities resembled those in the DEHP plus G. polyisoprenivorans G1-inoculated soil by Day 17.  相似文献   

12.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

13.
Balch G  Metcalfe C 《Chemosphere》2006,62(8):1214-1223
The endocrine modulating potency of five alkylphenol compounds to fish, including nonylphenol (NP), three nonylphenol ethoxylate mixtures (NP1EO, NP4EO, NP9EO) and one nonylphenol ethoxycarboxylate (NP1EC) was assessed using in vivo tests conducted with Japanese medaka (Oryzias latipes). Medaka exposed to test materials from 1 day to 100 days post-hatch were monitored for alterations to sex ratios and secondary sex characteristics and development of gonadal intersex (i.e., testis-ova). The treatment with 100 microg l-1 NP (measured 29 microg l-1) induced gonadal intersex in over 80% of exposed males, mixed secondary sex characteristics in over 40% of exposed fish and suppression of the development of papillae on the anal fin of 100% of males. The 30 microg l-1 NP (measured 8.7 microg l-1) treatment induced gonadal intersex in only one of the 22 exposed males and mixed secondary sex characteristics in approximately 20% of the exposed fish. An elevated incidence of fish with mixed secondary sex characteristics and suppression of papillae development was also observed in the treatment with NP1EO at the highest test concentration of 300 microg l-1 (measured 105 microg l-1). There was no evidence of mixed secondary sex characteristics or gonadal intersex in treatments with the remaining test mixtures. This study confirms that NP is an estrogenic compound that could affect gonadal development in fish chronically exposed to concentrations in the range of 10 microg l-1. NP1EO is very weakly estrogenic at concentrations that are an order of magnitude higher than the lowest observed effect concentration for nonylphenol.  相似文献   

14.
Removal of PAHs from water using an immature coal (leonardite)   总被引:1,自引:0,他引:1  
It has been studied an immature coal (leonardite) as an adsorbent for removing PAHs [fluorene, pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene] from water. To determine the efficiency of leonardite as an adsorbent of PAHs, factors such as pH, contact time and equilibrium sorption were evaluated in a series of batch experiments. There were no significant differences in the removal percentages for the various pH values studied, except for fluorene. The adsorption of fluorene was higher at lower pH values. The equilibrium time was reached at 24h. At this time, more than 82% of the pyrene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene had been removed. During the first 2h, the adsorption rate increased rapidly. After that time, however, there was a minor decrease. Equilibrium data were fitted to Freundlich models to determine the water-leonardite partitioning coefficient. Physical adsorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process. The polarity of the humic substances in leonardite may also have influenced the adsorption capacity.  相似文献   

15.
碱性条件促进太湖蓝藻厌氧发酵产挥发性脂肪酸   总被引:7,自引:0,他引:7  
采用批式研究实验,考察了酸性(pH 5)、中性(pH 7)和碱性(pH 9)条件下,太湖蓝藻厌氧发酵产挥发性脂肪酸(volatile fatty acids,VFAs)过程中的产酸指标,酸分布及蓝藻有机成分降解的效果。结果表明,pH为9时VFAs产率最高,为0.274 g VFAs/g VS,VS降解率达到51.91%。蓝藻有机成分中蛋白质、碳水化合物、脂类降解率也在pH为9时达到最高,分别为53.2%、30%和40.6%。实验对蓝藻产酸效果与其他固废产酸效果进行了比较,比较结果说明,太湖蓝藻作为厌氧发酵原料生产挥发性脂肪酸具有可行性。  相似文献   

16.
In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts.  相似文献   

17.
In this study, we have examined the effects of synthetic medium ingredients and culture incubation conditions on growth and tributyltin chloride (TBT) degradation activity of the fungus Cunninghamella elegans. The best efficiency of TBT conversion to less toxic derivatives: dibutyltin and monobutyltin was noticed on media which contained glucose, NH(4)Cl, K(2)HPO(4) and MgSO(4). Next, the constructed M3 medium (with the above components) ensured vigorous growth of C. elegans and allowed the reduction of 80% of the initial TBT content (10 mg l(-1)), after 3d of biodegradation. The further acceleration of the biocide utilization by C. elegans was achieved by additional oxygen supply (pO(2) >or = 20%) to the growing fungus (89% after 2d of incubation in the BioFlo II bioreactor). The efficient xenobiotic biodegradation was related to the intensity of fungal growth. The obtained results suggest a cometabolic nature of TBT utilization by C. elegans.  相似文献   

18.
Ağdağ ON  Sponza DT 《Chemosphere》2005,59(6):871-879
This study investigated the effects of alkalinity on the anaerobic treatment of the organic solid wastes collected from the kitchen of Engineering Faculty in Dokuz Eylul University, Izmir, Turkey and the leachate characteristics treated in three simulated landfill anaerobic bioreactors. All of the reactors were operated with leachate recirculation. One reactor was operated without alkalinity addition. The second reactor was operated by the addition of 3 g l-1 d-1 of NaHCO3 alkalinity to the leachate and the third reactor was operated by the addition of 6 g l-1 d-1 NaHCO3 alkalinity to the leachate. After 65 d of anaerobic incubation, it was observed that the chemical oxygen demand (COD), volatile fatty acids (VFA) concentrations, and biochemical oxygen demand to chemical oxygen demand (BOD5/COD) ratios in the leachate samples produced from the alkalinity added reactors were lower than the control reactor while the pH values were higher than the control reactor. The COD values were measured as 18900, 3800 and 2900 mg l-1 while the VFA concentrations were 6900, 1400 and 1290 mg l-1, respectively, in the leachate samples of the control, and reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 after 65 d of anaerobic incubation. The total nitrogen (TN), total phosphorus (TP) and ammonium nitrogen (NH4-N) concentrations in organic solid waste (OSW) significantly reduced in the reactor containing 6 g l-1 NaHCO3 by d 65. The values of pH were 6.54, 7.19 and 7.31, after 65 d of anaerobic incubation, respectively, in the aforementioned reactors results in neutral environmental conditions in alkalinity added reactors. Methane percentage of the control, reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 were 37%, 64% and 65%, respectively, after 65 d of incubation. BOD5/COD ratios of 0.27 and 0.25 were achieved in the 3 and 6 g l-1 NaHCO3 containing reactors, indicating a better OSW stabilization. Alkalinity addition reduced the waste quantity, the organic content of the solid waste and the biodegradation time.  相似文献   

19.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

20.
In this study soils from sugarcane-cultivated fields were screened for bacterial species capable of atrazine (6-chloro-N2-ethyl-N?-isopropyl-1,3,5-triazine-2,4-diamine) degradation due to long exposure of the soils to this herbicide. To enrich for atrazine degraders, Minimal Salt Medium containing atrazine as the sole N source and glucose as the C source was inoculated with soils impacted with this herbicide and incubated. Bacterial growth was monitored by measuring optical density. The degradation of atrazine was followed by measuring residual atrazine in liquid cultures over a given time period by high performance liquid chromatography. Bacterial strains isolated from the enrichment cultures were characterized by biochemical tests and identified by 16S rRNA gene sequencing. Two bacterial strains coded ISL 8 and ISL 15 isolated from two different fields were shown to have 94 and 96% 16S rRNA gene sequence similarity to Burkholderia cepacia respectively. Another bacterial sp., ISL 14 was closely related to Enterobacter cloacae with a 96% 16S rRNA gene sequence similarity. There was not much difference between the extents of atrazine degradation by the enrichment cultures with communities (79-82% applied amount) from which pure strains were isolated and the pure strains themselves in liquid cultures that showed a degradation of 53-83% of applied amount. The study showed existence of bacterial strains in different sugarcane-cultivated fields which can use atrazine as a nitrogen source. The bacterial strains isolated can be used to enhance the degradation of atrazine in contaminated soils where atrazine is still considered to be recalcitrant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号