首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解河谷型城市宝鸡市大气中冬季黑碳(BC)气溶胶的污染特征及光学特性,于2020年11月15日-2021年3月15日,利用AE-31型黑碳仪连续监测BC质量浓度,结合周末效应、相关性分析、聚类分析、潜在源贡献分析对宝鸡市采暖期间BC气溶胶进行污染特征和来源解析。结果表明:研究期间,宝鸡市BC的质量浓度范围为0.3~4.8μg/m3,平均质量浓度为1.4μg/m3,BC的日变化大致呈双峰双谷型;采暖期周末效应指数W值大于0,主要受工作日机动车辆限行的影响。采暖期的AAE平均值为1.64μg/m3,AAE值整体大于1.1;12月19日起AAE值超过1.8,生物质燃烧是BC的主要来源。研究期间宝鸡市不同污染等级下污染物的主要输送气流均来自东南方向,且均为短距离传输,污染气团的活动范围呈喇叭状,与河谷东宽西窄的地形相似;采暖季WPSCF的高值区域主要分布宝鸡市本部及周围地区,河谷地形与主导风向对采暖、汽车尾气和工业排放的污染物产生了传输和堆积的作用,导致了BC潜在源区的演变。  相似文献   

2.
北京地区不同尺度气溶胶中黑碳含量的观测研究   总被引:48,自引:4,他引:44  
2003年7月、8月以及11月至2004年1月,在北京大学物理楼顶(北纬39 99°,东经116 31°)使用两台黑碳仪(Aethalometer)和一台TEOM1400a(TaperedElementOscillatingMicrobalance)来观测气溶胶.得到夏季黑碳的平均浓度为8 800μg·m-3,冬季为11 400μg·m-3.在冬季的观测中,在一台黑碳仪的进气口加上不同的切割头,分别得到了全部气溶胶(TSP)、PM10以及PM2 5中的黑碳质量浓度.结果表明,北京冬季的气溶胶中,90%的黑碳存在于PM10中,82 6%的黑碳存在于PM2 5中.比较PM10的浓度和PM10中黑碳的浓度可以看出,PM10中黑碳质量平均占5 11%.  相似文献   

3.
天津夏季黑碳气溶胶及其吸收特性的观测研究   总被引:12,自引:2,他引:10       下载免费PDF全文
利用天津城市边界层观测站2010年8月12日~9月18日期间的黑碳、污染物和气象梯度观测数据,分析天津市夏季黑碳气溶胶浓度的变化特征及其影响因子.结果表明, 观测期间,黑碳气溶胶浓度均值为6.309mg/m3,占PM10质量浓度的4.17%,其吸收消光占气溶胶总体消光的10.23%.受人类活动和边界层结构影响,黑碳气溶胶浓度日变化呈双峰型,7:00达到峰值,14:00~16:00最小,20:00达到次高峰.黑碳气溶胶浓度随风速增加呈下降趋势,当风速超过4m/s时,浓度一般低于5mg/m3,西风及西北风对天津城区黑碳气溶胶输送作用明显,其出现大于10mg/m3的高黑碳气溶胶事件概率为18.07%;逆温和大气稳定易造成黑碳气溶胶在近地层的堆积,形成高污染事件.  相似文献   

4.
不同季节气象条件对北京城区高黑碳浓度变化的影响   总被引:2,自引:0,他引:2  
利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM_(2.5)质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m~(-3);黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM_(2.5)浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.  相似文献   

5.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

6.
邯郸市黑碳气溶胶浓度变化及影响因素分析   总被引:2,自引:0,他引:2  
根据2013年3月—2017年2月邯郸市河北工程大学站点的黑碳气溶胶、PM2.5、大气污染物的小时浓度数据及常规气象数据,对邯郸市黑碳浓度的时间变化特征及影响因素进行分析.结果表明,4年来邯郸市黑碳浓度呈逐年下降的趋势:与2013年相比,2014—2016年黑碳气溶胶浓度分别下降了5%、16%、24%;邯郸市黑碳气溶胶浓度的季节变化趋势基本一致且季节变化特征明显,冬季黑碳气溶胶浓度最高,秋季次之,春夏两季最低,其中,冬季平均浓度分别是春、夏、秋季的2.07、2.77、1.49倍;其日变化呈单峰单谷状,且4个季节的日变化趋势相同,峰值均出现在6:00—8:00,谷值均出现在14:00—15:00.黑碳与PM2.5的相关系数r为0.860,相关性显著,说明黑碳气溶胶和PM2.5的来源大部分是一致的;风速和风向对黑碳气溶胶浓度也有影响,黑碳气溶胶浓度随风速增加而降低;4个季节高频风向为南-西南方向,且该风向下黑碳气溶胶浓度均较高,冬季南-西南风向下的黑碳浓度最高;应用后向轨迹对研究时段内4段重污染期间的气流轨迹进行模拟发现,邯郸市黑碳气溶胶浓度较高的主要原因是本地源排放和近距离传输,远距离传输贡献较小.  相似文献   

7.
南京北郊黑碳气溶胶污染特征及影响因素分析   总被引:6,自引:4,他引:2  
肖思晗  于兴娜  朱彬  何镓祺 《环境科学》2016,37(9):3280-3289
利用2015年1~10月黑碳小时平均质量浓度、PM2.5浓度、污染气体及常规气象观测资料,对南京北郊黑碳气溶胶的时间序列演变特征、污染特征及其影响因子进行了分析.结果表明,观测期间南京北郊黑碳浓度均值为(2 524±1 754)ng·m~(-3).黑碳浓度具有明显的季节变化,冬季最高,平均值达到(3 468±2 455)ng·m~(-3),春季平均值最低,为(2 142±1 240)ng·m~(-3);其日变化也具有明显的双峰结构,峰值出现在上午07:00~08:00和夜间21:00~22:00.黑碳气溶胶与NOx的相关性较好,说明黑碳浓度受机动车尾气排放的影响较大;但观测期间ΔBC/ΔCO比值较低,表明生物质燃烧可能是黑碳气溶胶的又一个重要来源.黑碳浓度随风速增加呈下降趋势,所有季节中小于2 000 ng·m~(-3)的低黑碳浓度主要集中在正西风及相邻风向上,秋冬季大于6 000 ng·m~(-3)的高黑碳浓度则多出现在偏东风下.灰霾和重度霾天气下的黑碳浓度平均值呈较高水平,是非霾天气下的2~2.3倍.  相似文献   

8.
针对2012年珠江三角洲地区出现的2个典型灰霾个例(3月18~21日,10月13~15日),利用广州番禺大气成分综合观测基地的同期观测资料集,包括:能见度(VIS)、大气颗粒物质量浓度(PM10/PM2.5/PM1)、黑碳浓度(BC)等观测数据,分析过程中的气溶胶物理光学特征;配合过程的天气类型,气象要素和后向气流轨迹等对过程的成因进行综合分析.结果表明:在两个典型灰霾过程中,番禺日均能见度低至5.3km,黑碳浓度小时均值最高达19.0μg/m3、PM2.5浓度小时均值最高达163.0μg/m3,细粒子与黑碳粒子污染特征较为明显.两次典型灰霾过程分别受到冷锋前-均压场-冷锋前天气形势和台风外围-准均压场-冷锋前天气类型等不利于污染物输送扩散的气象条件影响.珠江三角洲地区低能见度的霾天气主要发生在高相对湿度的条件下,并可推断在珠江三角洲地区湿季的气溶胶吸湿能力明显高于干季.  相似文献   

9.
无锡市大气PM2.5中黑碳的粒径分布与混合态特征   总被引:1,自引:0,他引:1  
针对长江三角洲地区PM2.5中的重要组分黑碳(BC)气溶胶,2010~2011年利用单颗粒黑碳光度计(SP2),对江苏省无锡市夏冬两季BC气溶胶的质量浓度、粒径分布及单颗粒混合态进行了连续在线观测.结果表明,无锡市冬季BC质量浓度(6.1μg/m3)是夏季(2.5μg/m3)的2.4倍,内混态BC比例(NIB)冬季(64.8%)也显著高于夏季(44.6%),说明冬季BC污染与来外来污染传输有关.反向轨迹分析表明,来自华北平原的污染气团输入是冬季高浓度BC污染的首要原因. NIB的日变化趋势与BC质量浓度的完全相反.午后BC质量浓度最低时NIB最高,反映了二次光化学产物包覆在BC颗粒外层的老化过程.此外,夏冬两季BC粒径分布保持稳定,其质量浓度峰值对应粒径在225nm左右,数浓度峰值对应粒径在120nm左右.  相似文献   

10.
成都市黑碳气溶胶污染特征及与气象因子的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孙欢欢  倪长健  崔蕾 《环境工程》2016,34(6):119-124
为系统了解成都市黑碳气溶胶(BC)的污染特征,利用四川省环境监测站提供的成都市人民南路四段2013年9月至2014年7月逐时BC监测数据,对其浓度进行了统计分析。结果表明:1)BC小时平均浓度变化范围较大,介于0.01~57.83μg/m3,浓度中值(5.17μg/m3)小于平均值(7.32μg/m3),即BC小时浓度具有偏态分布特征。2)BC日均浓度变化范围为2~28.2μg/m3,其浓度日变化在四季均呈明显的单谷型,谷值出现在16:00时附近,表现为从凌晨到10:00时变化较平稳,10:00—16:00时浓度急剧下降,16:00到夜间浓度急剧上升;浓度季变化呈现出冬高夏低,春秋平稳的基本特征。3)秋、冬、春、夏四季BC本底浓度值分别为2.49,5.05,2.89,2.43μg/m3。4)BC质量浓度与PM2.5和PM10变化趋势一致,BC浓度相对颗粒物浓度变化较快,在0.01水平上与PM2.5和PM10均呈显著正相关,相关系数分别为0.657、0.638,与温度、降水和风速均呈负相关,相关系数分别为-0.334,-0.338,-0.202。  相似文献   

11.
济南市春季大气颗粒物污染研究   总被引:10,自引:2,他引:8  
对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素.  相似文献   

12.
兰州远郊区黑碳气溶胶浓度特征   总被引:10,自引:2,他引:8       下载免费PDF全文
利用兰州大学半干旱气候与环境观测站(SACOL)2007年1月1日至2009年8月28日黑碳气溶胶浓度和同期常规气象资料,分析了兰州远郊区黑碳气溶胶浓度特征.结果表明,该区黑碳气溶胶日平均浓度为1568ng/m3,低于东部地区区域本底站浓度,表明该地区污染较轻;黑碳浓度具有明显的季节变化,从春季到冬季平均浓度依次增大,分别为1234.74,1290.23,1669.06,2088.73ng/m3,日变化具有明显的双峰结构,最大值出现在09:00,最小值出现在17:00.黑碳浓度的变化特征与本地区的盛行风向、人类活动及天气过程有密切关系.沙尘气溶胶对黑碳浓度的影响取决沙尘过程的强度、沙尘携带的人为污染物的种类及数量、黑碳颗粒被其他气溶胶混合和包裹的程度.统计分析得出该地区大气黑碳气溶胶本底浓度约为1000ng/m3.  相似文献   

13.
南京北郊黑碳气溶胶分布特征及来源   总被引:5,自引:5,他引:0  
谢锋  林煜棋  宋文怀  鲍孟盈  章炎麟 《环境科学》2020,41(10):4392-4401
黑碳(black carbon,BC)是含碳物质燃烧排放所产生的大气颗粒物(particulate matter,PM)中一种重要组分,其对辐射效应表现为对太阳辐射的吸收和散射,影响着地气系统的能量交换.本研究于2019年1~5月在南京北郊利用黑碳仪AE33(aethalometer,magee)测量了黑碳气溶胶浓度数据,对其日夜变化和季节变化进行分析,并筛选出污染天与清洁天,对其特征和来源进行分析.结果显示采样期间黑炭气溶胶的平均浓度为(3.8±2.3)μg ·m-3,冬季浓度为春季的1.3倍.BC浓度呈现明显的日变化,BC高值出现在日间交通高峰时间段,受到交通排放的影响较大.Ångström指数α冬春整体差异不大,春季为1.32冬季为1.30,此结果也指出BC排放源以机动车排放为主.此外,针对采样期间污染天与清洁天的BC来源特征进行分析,发现污染天机动车排放源占比为68%~87%,清洁天为72%~86%,清洁天来源小幅波动但均以机动车排放源为主,污染天相对而言存在一定的机动车源减少生物质和煤炭燃烧源增加的情况,取决于污染时段的排放情况,利用BC/CO(0.005)进一步验证了上述源解析结果.通过PSCF和CWT分析可以得到南京北郊大气BC颗粒物以本地来源为主,但冬季可能存在来自东南地区的机动车排放来源,春季可能存在来自西南地区的生物质及煤炭燃烧来源.总体看来南京北郊黑碳气溶胶分布以冬高春低,并存在明显日夜变化,主要来源为本地的机动车排放为主.  相似文献   

14.
以珠三角地区4个区域监测站2012年夏秋季节监测结果为例,分析该地区不同粒径大气颗粒物(PM10/PM2.5/PM1)和碳黑气溶胶(BC)质量浓度的变化特征。结果显示,区域内不同站点之间或站点不同粒径颗粒物之间均有显著的相关性,该地区PM,和BC质量浓度约占PM2.5的70%和8.2%,PM1,约占PM10的68%。秋季污染天气中,PM1质量浓度的增长量大于其他粒径颗粒物的增长量。颗粒物浓度与大气能见度的影响分析显示,碳黑气溶胶质量浓度增大与能见度降低关系密切。  相似文献   

15.
瓦里关大气本底监测站位于青藏高原东北部,几乎不受局地人为活动的影响,可反映较大空间尺度的大气成分信息.为研究人为活动对本底大气成分产生的影响,在瓦里关站点利用七波段黑碳仪(AE33)对2019年1—12月的黑碳(BC, black carbon)气溶胶浓度进行连续观测,获得了其季节和日变化特征,并使用黑碳仪模型和拉格朗日大气传输模式FLEXPART(Flexible Particle Dispersion Model)对BC来源类型和源区分布进行了分析.结果显示:黑碳气溶胶平均浓度为(332±308) ng·m-3;受污染排放和气象因子的季节性变化的影响,BC在春季、夏季、秋季、冬季的平均值分别为(446±343)、(297±223)、(233±209)、(352±382) ng·m-3;BC日变化峰值分别出现在凌晨(3:00)和中午(13:00),凌晨出现的峰值由污染长距离输送引起,中午出现的峰值与局地山谷风环流有关.中午的峰值是由BC黑碳来源解析结果显示化石燃料燃烧对BC浓度的贡献占主导地位,全年平均贡献率为68%.生物质燃烧的贡献率在冬季明显升高,达到了40%±1%;FLEXPA...  相似文献   

16.
四川盆地是我国灰霾和大气污染易发和频发区之一,目前关于本地区黑碳气溶胶(black carbon,BC)的相关研究较少。利用2017年11月—2018年12月成都西南城郊地区黑碳气溶胶以及PM2.5观测资料,结合气象资料和其他污染物浓度资料,分析BC和PM2.5浓度,BC浓度在PM2.5浓度中所占比例(黑碳占比)的季节、月、日变化特征及其影响因子。结果表明:(1)BC逐小时浓度范围为0.18—40.51 μg?m?3,平均值为(5.26±4.68) μg?m?3,本底浓度为3.34 μg?m?3。PM2.5逐小时浓度范围为1.00—344.50 μg?m?3,平均值为(60.02±46.91) μg?m?3,本底浓度为33.38 μg?m?3。日变化均呈“白天低,早晨、夜间高”的变化特征,其中冬季浓度最高,春、秋季次之,夏季浓度最低。(2)黑碳占比均值为9.16%±5.13%,白天黑碳占比低,夜间黑碳占比高,且夏季最高,冬季最低。随着空气污染加重,冬季占比缓慢增加,其他三季占比减小。(3)BC与NO2和CO相关性较好,表明西南城郊BC排放主要受机动车尾气、生物质燃烧影响。BC和SO2相关系数偏小,燃煤等工业源排放对西南城郊BC的贡献较小。(4)风速、温度和湿度与BC浓度均有很好的相关性,其中风速对BC浓度的影响最大,当风速小于2.0 m?s?1时,BC浓度值明显偏高;BC浓度大于20.00 μg?m?3的高值区主要集中在西北、西南以及东北风向上,即:偏东北方向市中心大气中的污染物,以及西南方向远郊地区的污染物可能对西南城郊高浓度黑碳的贡献更大。  相似文献   

17.
2008北京残奥会期间大气黑碳气溶胶污染特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用单颗粒黑碳光度计(SP2)对2008年残奥会期间北京市黑碳(BC)气溶胶的质量浓度、粒径分布及单颗粒混合态进行连续在线观测.结果表明:观测期间BC浓度均值为1.65μg/m3,低于往年同期水平;质量粒径分布呈单峰型,峰值位于207nm;内混态BC比例平均为56.1%,高于其他国内外城市,说明本地源排放贡献相对较小.随大气边界层高度及本地源排放变化,BC浓度在上午8:00和午夜0:00出现2个峰值,内混态BC比例日变化趋势与之相反.风向风速分析表明,残奥会期间来自五环外未限行区域的机动车排放对市区BC浓度有明显影响.  相似文献   

18.
利用兰州大学半干旱气候与环境观测站(SACOL)2010年9月至2011年8月的黑碳气溶胶观测资料,分析了兰州市区和郊区黑碳气溶胶的浓度变化特征.结果表明:市区的年平均黑碳浓度要远大于郊区.日变化都呈明显的双峰结构,最大值出现在08:00~10:00,最小值出现在16:00左右;对于月最大频数浓度的年变化,市区和郊区均是5月黑碳浓度最小,其值分别为1143和932ng/m3,1月黑碳浓度最大,分别为10230和5063ng/m3;市区的周变化较郊区明显;沙尘条件下黑碳气溶胶浓度值低于当月的日均值.  相似文献   

19.
南京北郊大气细粒子中黑碳气溶胶的观测研究   总被引:10,自引:1,他引:9  
运用2008年11月至2010年4月在南京北郊大气细粒子中黑碳气溶胶的观测结果,研究黑碳的时间序列演变特征、污染状况、与气体的非均相关系等.结果表明,黑碳气溶胶的日均浓度为1114~19408 ng·m-3,局地人为活动与气象条件的改变等因素导致黑碳气溶胶日变化呈双峰形;黑碳气溶胶小时平均浓度频数统计和对数正态分布拟合...  相似文献   

20.
南京冬季重污染过程中黑碳气溶胶的混合态及粒径分布   总被引:1,自引:1,他引:0  
2013年12月,我国中东部地区暴发持续性重污染过程.本研究利用单颗粒黑碳光度计(SP2),分析这次过程中黑碳气溶胶(BC)的质量浓度、混合态以及粒径分布特征.结果表明,观测期间南京BC质量浓度在1.01~14.05μg·m-3之间,平均为4.39μg·m-3,污染较重时呈现夜间高白天低的日变化特征,污染较轻时则为早晚双峰型;用相对包裹层厚度(Dp/Dc)表示BC混合态特征,污染较轻时日变化为凌晨及午后较高,早晚出行高峰期较低,说明在凌晨及午后BC的老化程度较深,早晚机动车排放高峰时段BC多为近地源排放的新鲜粒子.污染较重时Dp/Dc日变化相对平缓,区域性污染特征更为明显并在高相对湿度下体现出气-固转化的过程;BC质量和数谱的粒径分布均为单峰型,数谱峰值粒径在污染较轻时分布在91 nm左右,污染较重时为100 nm,不同污染程度下质量谱峰值粒径均为210 nm,通过对比全球范围的观测结果可以体现出BC一次源的区域性差异.本研究对深入认识长三角地区大气BC污染特征,具有重要的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号