首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Temporary stabilization of air pollution control residues using carbonation   总被引:1,自引:0,他引:1  
Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.  相似文献   

2.
This paper discusses the stabilisation/solidification process with Portland cement applied to municipal solid waste incineration residues. Two types of residues were considered: fly ash (FA) produced in an electrostatic precipitator, and air pollution control (APC) residues from a semi-dry scrubber process. Cement pastes with different percentages of FA and APC residues were characterised according to their physical properties, the effect of the hydration products and their leaching behaviour. Portland pastes prepared with APC residues showed a rapid setting velocity in comparison with setting time for those pastes substituted with FA residues. Portland cement hydration was retarded in FA pastes. Leaching test results showed that heavy metals (such as Zn, Pb and Cd) and sulphates are immobilised within the paste, whereas chlorides are only partially retained. The carbonation process increases the leachability of S04(2-) and heavy metals such as Zn and Cr.  相似文献   

3.
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.  相似文献   

4.
The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). The main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2–6.8 meq g?1 (for pH = 7) and 10.1–11.6 meq g?1 (for pH = 4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl? is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.  相似文献   

5.
The application of a micro-characterization protocol coupled with a balance approach has allowed the relevant monitoring of a phosphation process for fly ash produced by municipal solid waste incineration. The three main steps of this process consist in removing the salts (chlorides, sulfates) by dissolution at basic pH, phosphation of the residue to trap metals, and its calcination to destroy dioxin-like compounds. The chemical and mineralogical balances compiled on the samples after each step of the process validate these main objectives and highlight the wide phosphorus distribution throughout the sample during the phosphation process, as well as the formation of apatite-type crystallized phosphates. During calcination, the increase in the proportion of crystallized phosphates apatite and whitlockite is largely attributable to the presence of an available calcium source, corresponding to the calcite formed during washing. The metals Pb and Zn, initially distributed in the silicate and carbonate phases, are broadly redistributed in the phosphate neoformations after carbonate dissolution, thus guaranteeing a more permanent stabilization.  相似文献   

6.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

7.
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.  相似文献   

8.
陈逸斌  吴明红  杨洁  王旌  徐刚  姜勇 《化工环保》2019,39(5):532-537
以一水合柠檬酸(CA)为洗涤剂,分别采用吐温80(TW80)、十二烷基磺酸钠(SDS)、β-环糊精(BCD)和腐植酸(HA)4种表面活性剂与CA联合洗涤高黏性土壤中的重金属,考察表面活性剂与CA的联合洗脱效果。实验结果表明:添加4种表面活性剂均可提高CA对Cu、Zn和Pb的去除率;处理时无需调节体系pH;在表面活性剂与CA的混合液与土壤的液固比为10:1(mL/g)的条件下,采用一次洗涤即可。经4种表面活性剂与CA联合洗涤后,土壤中Cu、Zn和Pb的离子交换态、碳酸盐结合态和铁锰氧化结合态的占比均下降,而硫化物及有机结合态和残渣态的占比有所提升。  相似文献   

9.
This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment.The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range.In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.  相似文献   

10.
柠檬酸淋洗去除电子垃圾污染土壤中的重金属   总被引:1,自引:0,他引:1       下载免费PDF全文
采用柠檬酸溶液对模拟电子垃圾污染土壤(简称污染土壤)中Cu,Pb,Cd 3种重金属进行淋洗实验,考察了柠檬酸溶液的浓度、柠檬酸溶液的pH、淋洗时间等对污染土壤中Cu,Pb,Cd的淋洗效果,探讨了柠檬酸溶液淋洗前后污染土壤中Cu,Pb,Cd 3种重金属各形态含量的变化。研究结果表明,在柠檬酸溶液的浓度0.100 mol/L、柠檬酸溶液的pH 5、淋洗时间1 440 min的适宜条件下,对污染土壤中Cu,Pb,Cd的去除率分别达到89.37%,72.11%,86.39%。柠檬酸溶液对3种重金属的去除主要是通过洗出酸可提取态(R1)和酸可还原态(R2)来实现的,每种重金属的R1和R2之和均占到其淋出总量的95%以上,而酸可氧化态(R3)和残渣态(R4)的含量淋洗前后基本无变化。  相似文献   

11.
Fly ash generated from MSW ash-melting and gasification-melting plants, known as Melting Furnace Fly Ash (MFA), contains considerable amounts of heavy metals such as Pb and Zn. These metals can be recovered using a smelting furnace after "pre-treatment" for removal of unnecessary elements such as Cl, Sn and Si. Chemical methods have been studied for pretreatment in the past. However, they have been discussed only with regard to treatment cost and the concentration of Pb and Zn recovered, but neither applicability to various types of MFA nor the environmental impact have been considered. In this study, acid, alkaline and ammonia/chloride leaching methods were compared from the standpoints of: (1) applicability to MFA, (2) concentration of Pb and Zn recovered, (3) treatment cost, and (4) environmental impact. Twenty-three samples of MFAs were collected and classified into 4 types based on element contents. A Pb and Zn recovery experiment was conducted for the representative MFA of those types. The results showed: (1) MFA from gasification-melting plants cannot be treated by chemical methods; (2) the other MFA can be treated to an acceptable quality by existing smelting furnaces; (3) only MFA from electric resistance ash-melting plants can be treated easily by the water washing method; and (4) alkaline and ammonia/chloride leaching methods were more effective than acid leaching.  相似文献   

12.
Municipal Solid Waste Incineration (MSWI) produces different sorts of residues, bottom ash, fly ashes and Air Pollution Control (APC) residues. Generally, fly ashes and APC residues are mixed at the MSWI plant and manage as a sole residue. In this study, fly ashes and APC residues have been sampled separately at different Belgian MSWI plant and analysed by X-ray fluorescence in order to highlight the composition differences that may appear between the solids. Ca and Cl are found to be the major elements in most of the samples. Lithophilic elements, such as Al and Si, are richer in furnace and boiler ashes, as can be expected. Leaching tests also show differences between the residues; leachates from furnace and boiler ashes are alkaline while those from bag filter residues present a pH value of 6, which impacts the leaching of heavy metals (Pb and Zn). The results suggest that it could be advantageous to manage fly ashes and APC residues separately by adjusting the treatment to their specificities.  相似文献   

13.
Air pollution control (APC) residues from waste incineration have been blended with silica and alumina and the mix melted using DC plasma arc technology. The chemical composition of the fully amorphous homogeneous glass formed has been determined. Waste acceptance criteria compliance leach testing demonstrates that the APC residue derived glass releases only trace levels of heavy metals (Pb (<0.007mg/kg) and Zn (0.02mg/kg)) and Cl(-) (0.2mg/kg). These are significantly below the limit values for disposal to inert landfill. It is concluded that plasma treatment of APC residues can produce an inert glass that may have potential to be used either in bulk civil engineering applications or in the production of higher value glass-ceramic products.  相似文献   

14.
COGNIS TERRAMET® soil leaching and Bescorp soil washing systems have been successfully combined to remediate an ammunition test burn area at the Twin Cities Army Ammunition Plant (TCAAP), New Brighton, Minnesota. This cleanup is the first in the country to successfully combine these two technologies, and it offers a permanent solution to heavy metal remediation. Over 20,000 tons of soil were treated in the project. The cleaned soil remained on-site, and the heavy metal contaminants were removed, recovered, and recycled. Eight heavy metals were removed from the contaminated soil achieving the very stringent cleanup criteria of <175 ppm for residual lead and achieving background concentrations for seven other project metals (antimony, cadmium, chromium, copper, mercury, nickel, and silver). Initial contaminant levels were measured as high as 86,000 ppm lead and 100,000 ppm copper, with average concentrations over 1,600 ppm each. In addition, both live and spent ordnance were removed in the soil treatment plant to meet the cleanup criteria. By combining soil washing and leaching, COGNIS and Bescorp were able to assemble a process which effectively treats all the soil fractions so that all soil material can be returned on-site, no wastewater is generated, and the heavy metals are recovered and recycled. No hazardous waste requiring landfill disposal was generated during the entire remedial operation.  相似文献   

15.
Air pollution control (APC) residues which are generated by municipal solid waste (MSW) incineration show a high-level of pollution potential. In order to stabilize such APC residues, the French power supply company (EDF) is developing a thermal treatment process which leads to the production of a vitrified material. A structural characterization of the vitrified product was carried out by applying complementary investigation methods: XRD, SEM, Raman spectroscopy, EPMA, and data interpretation methods such as mineralogical analysis and principal component analysis (PCA). The major phase of the material was a solid solution of melilite type composed of five end-members: gehlenite (44%), åkermanite (25%), ferri-gehlenite (5%), sodamelilite (14%) and hardystonite (11%). The minor phases identified were spinels and pyroxenes.An ANC leaching test was performed in order to observe the treatment effect on pollutant release. The natural pH was close to 10, and the major element release was less than in the case of untreated APC. This was a consequence of melilite formation. The effect of pH was fundamental for heavy metals release: lower solubilization occurs at pH 10 than at APC’s natural pH (11–12).  相似文献   

16.
Environmental assessment of residue disposal needs to account for long-term changes in leaching conditions. Leaching of heavy metals from incineration residues are highly affected by the leachate pH; the overall environmental consequences of disposing of these residues are therefore greatly influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range of pH values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1) corresponding to about 100,000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues.  相似文献   

17.
Fly ash from combustion of municipal solid waste sometimes contains large amounts of soluble salts, such as NaCl, even though the content of soluble toxic metal compounds is relatively low. Removal of the salts by washing with water has been suggested as a method to increase the stability of this type of ash. In the work presented here, a simple washing process was studied and evaluated. The process includes three steps: leaching with water, filtration and displacement washing. Basic data were obtained in laboratory experiments and used in the construction of pilot plant equipment at a full size fluidized bed boiler, where a side-stream of the cyclone ash was treated. The process was designed to minimize the water consumption while obtaining an effective removal of salts and a stable ash residue. In order to achieve this, recirculation of leaching liquor was used and the displacement washing was adjusted to become close to ideal. The results showed that an ash/water slurry with a liquid to solid ratio as low as 3 could be handled without difficulty in the mixing, pumping and filtration units. Washing of the filter cake at a liquid to solid ratio of 0.5 removed the major part of the remaining dissolved salts in the pore liquid. About 90% of the chloride content was removed from the ash, whereas the contents of Na, K, Ca, Cd, Pb and a number of other minor elements were removed by 10-30%. Before treatment, the results of ash leaching tests were sometimes too high for chloride (2003/33/EC), but the treatment reduced the amount of soluble chlorides to far below the limit values. The leachability of most metals was reduced or unaffected by the ash treatment. For Na, K and Cl, it was less than 10% of the value for the untreated ash. However, the results showed that some ash components may be mobilized by the washing. Antimony is the most important due to its toxicity.  相似文献   

18.
Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.  相似文献   

19.
In the Summer 2004 issue of Remediation, the authors presented a study of the influence of buffering behavior in contaminated Andisol soil. This article, Part II, expands on this research by presenting the results of laboratory tests conducted to study the movement of heavy metals in contaminated Andisol soil during the first stage of an electrochemical remediation process. The analysis was performed on the soil after treatment and also on the washing solutions collected during the first four hours. In order to analyze the effectiveness of fast and simple techniques for monitoring the electroremediation process, computer‐aided modeling of speciation in the soil solution was performed in connection with the remediation treatment. The results show that the metals moved mainly as positive species in the soil and later occurred as insoluble forms relative to the pH value in the washing solution from the cathode chamber. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
Knowledge of the behaviour of heavy metals in the combustion process is a most important factor in selecting disposal alternatives for waste materials. Accordingly, in this work, the vaporization behaviour of highly concentrated heavy metals (Pb, Zn, Cu and Cr) in tannery sludge were investigated experimentally. The sludge was spiked with various chlorine compounds (i.e. PVC, FeCl3, CaCl2 and NaCl) and pre-treated with phosphoric acid in order to evaluate the capacity of enhancement and weakening of the volatility of the heavy metals contained in tannery sludge. The experimental results show that the vaporization percentages increased with increasing ratio of Cl/sludge and temperature, and the accelerating and increasing effect of the addition of chlorides on the vaporization percentage of heavy metals was dependent on the release capacity of chlorine radicals. The vaporization percentages of lead and zinc increased by 15-20%, whereas those of copper and chromium increased by only about 3 and 10% at 800 degrees C. However, heavy metals were not expected to be completely released in the combustion process in spite of the high ratio of Cl/sludge. Alternately, heavy metals contained in tannery sludge can be immobilized effectively by pre-treatment with phosphoric acid. When the 85% phosphoric acid accounted for 10% of dry basis of tannery sludge, the phosphate-treated sludge showed the lowest vaporization percentage of about 3-15% with formation of Ca18Cu3(PO4)14, Ca9Cr(PO4)7, Ca19Zn2(PO4)14 and PbMgP2O7 in the bottom ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号