共查询到20条相似文献,搜索用时 31 毫秒
1.
以土霉素菌渣(oxytetracycline fermentation residue,OFR)为原料,在300~900 ℃(间隔100 ℃)条件下制备生物炭,研究高温(800~900 ℃)制备OFR生物炭对废水中铀的吸附效果与机理。结果表明:对于不同温度下制备的生物炭,随着温度的升高,OFR生物炭表面功能基团逐渐减少,Ca晶体形态由CaC2O4(300~400 ℃)转变为CaCO3(500~700 ℃)、CaO(800~900 ℃),而这也导致了吸附效果的变化。当制备温度升至800~900 ℃时,OFR生物炭10 min吸附即可对南方某铀尾矿库渗排水中的铀达到98%以上去除率,且高温制备的OFR生物炭在较宽的pH范围(4.0~9.0)与铀初始浓度(0.8~3.0 mg/L)下,均能稳定达到大于98%的去除率,处理后上清液中铀浓度远低于铀矿冶辐射防护和辐射环境保护规定的排放标准。因此,高温制备OFR生物炭在铀尾矿库渗排水原位处理方面,展示了较好的应用前景。 相似文献
2.
为明确生物炭制备条件对生物炭性质及厌氧消化效果的影响,本研究以小麦秸秆(WS)为原料,在不同热解温度和不同KOH改性浓度条件下制备出不同类型的麦秆生物炭(WBC).研究发现,较低的热解温度能够保护WBC表面的官能团,而较高的热解温度则能够提高WBC的比表面积,孔容及平均孔径.KOH改性能够向WBC表面引入─OH,且一定程度上会影响WBC的比表面积,孔容及平均孔径.将制得的WBC分别添加到餐厨垃圾厌氧消化(KWAD)系统中,发现所有WBC均能够提高KWAD的总产气量.其中WS650与WS450-2的促进作用最显著,较CK分别提高了32.82%和30.01%的总产气量.在关键酶活性的研究中,发现WS450-2的辅酶F420与脱氢酶活性大大提升,这可能与其表面丰富的官能团有关.在微生物群落结构的研究中,WS450-2在富集厚壁菌门(Firmicutes),抑制非相关细菌方面展现了较大优势;WS650在富集甲烷八叠球菌属(Methanosarcina),抑制非相关古菌方面展现了较大优势.最后通过冗余分析明确了WBC制备工艺和表征指标与KWAD产气动力学参数,过程参数,酶活性和微生物丰度之间的相... 相似文献
3.
文章以制药厂发酵妥布霉素菌渣为原料,采用限氧裂解法在不同温度下制备生物炭,利用高效液相色谱仪、元素分析仪、扫描电子显微镜、傅里叶红外光谱仪等现代分析技术对菌渣以及生物炭的结构、形貌、比表面积、孔径、表面官能团和元素含量等理化特性进行分析表征。结果表明,菌渣中妥布霉素含量为10.23μg/g,生物炭中未检测到;生物炭中C元素含量和比表面积均比菌渣的高,随着温度升高,C元素含量增大,H/C比下降;生物炭具有多孔结构,主要为中孔;随着热解温度升高,生物炭中烷烃基缺失。该研究可为抗生素菌渣的无害化处理以及菌渣生物炭用于重金属和有机污染物废水处理提供理论依据。 相似文献
4.
采用纳米零价铁基生物炭(nZVI-BC)耦合过二硫酸钠(PDS)或过硫酸氢钾(PMS)构建吸附-高级氧化复合体系开展水中土霉素(OTC)的高效降解。考察了在不同PDS/PMS浓度、nZVI-BC投量、OTC浓度及初始pH条件下OTC的去除规律,并对体系中活性物种进行探究。结果表明:在0.20 mmol/L PDS/PMS,0.01 g nZVI-BC,50 mg/L OTC,原始pH为5.0±0.1条件下,OTC去除率可达到80%以上;SO 4-·在nZVI-BC/PDS体系中对OTC降解占有绝对主导地位(贡献度为57.00%),nZVI-BC/PMS体系则主要依靠SO 4-·、O 2-·和1O 2。 相似文献
5.
文章采用电子束辐照技术对土霉素菌渣进行了处理,研究了吸收剂量、辐照厚度以及环境条件等参数对土霉素降解的影响,分析了辐照前后菌渣中有机物成分的变化,并探究了辐照过程中菌渣的生物毒性变化。研究表明,随着吸收剂量的增加土霉素的含量逐渐减小,20 kGy时土霉素降解40.59%,300 kGy时土霉素降解80.04%;相同吸收剂量条件下,辐照厚度为1 cm的降解效果优于2 cm;采用NaOH消解的菌渣中土霉素的降解效果最好,其次是H2O2消解,而H2SO4消解的效果最差;菌渣中含有大量的氨基酸、脂肪酸、生物碱以及药物成分,经辐照后部分有机物降解并会产生部分新的有机物;随着吸收剂量的增加,生物毒性逐渐减小。 相似文献
6.
为探究生物炭介导的鸡粪厌氧消化产甲烷的较优添加比例,在发酵温度[(35±1)℃]、接种率30%的条件下,进行了以鸡粪为底物,生物炭为外源添加剂的厌氧消化试验,研究生物炭不同添加量(20%、15%、10%、5%和不添加)对鸡粪厌氧消化产气特性的影响,确定了生物炭介导的鸡粪厌氧消化的较优添加比例;同时,用扫描电子显微镜对厌氧消化前后生物炭颗粒和附着在生物炭颗粒上的微生物进行了观察.结果表明:生物炭的添加提高了鸡粪单位VS产甲烷量,添加20%、15%、10%和5%生物炭的处理鸡粪VS产甲烷量分别为223mL/g、228mL/g、230mL/g和281mL/g,均高于对照组的202mL/g;添加生物炭提高了产气中的甲烷含量,降低了二氧化碳和硫化氢含量,提高了沼气品质;电镜扫描结果表明,厌氧消化后生物炭表面及内部附着了大量厌氧微生物,主要为杆菌、微粒菌和球菌;本研究中,生物炭介导鸡粪厌氧消化最优的添加比例约为5%. 相似文献
7.
以菱角壳为原料,乙酸钾为活化剂,通过活化碳化一步法制备了改性生物炭(MBC),对其表面形貌、孔径分布、官能团等表面性能进行了表征,并研究了其对水中盐酸土霉素(OTC)的吸附去除行为.相比于热解生物炭(BC),MBC有更高的比表面积(1147.80m2/g)、更丰富的孔径结构,更多的含氧官能团和更强的亲水性.溶液pH值在... 相似文献
8.
以中温(100℃)常压的微波预处理结合零价铁投加为对象,考察了低投加量5. 19~41. 51 g·kg~(-1)(以TS计)、高投加量83. 35~853. 46 g·kg~(-1)(以TS计)下的零价铁对微波预处理污泥厌氧消化的进一步强化作用.结果表明,微波预处理与零价铁组合可使污泥厌氧消化产甲烷潜势提升17%~23%.零价铁对微波预处理后污泥厌氧消化具有一定的促进作用,且提升了厌氧消化初期(1~4 d)产甲烷速率,零价铁投加量为31. 13 g·kg~(-1)(以TS计)时,产甲烷潜势提升了7. 42%,反应第2 d的产甲烷速率提高了11. 02%.高投加量的零价铁并未表现出更好的强化效果.零价铁促进了厌氧消化初期溶解性有机物的释放,投加量为31. 13 g·kg~(-1)(以TS计)时,溶解性蛋白质较单独预处理组提高21. 16%,并且零价铁投加加快了乙酸、异丁酸、异戊酸的消耗.零价铁的投加,导致上清液中的磷酸根和硫酸根浓度降低,相应地,上清液中铁元素的浓度反而下降,说明零价铁的形态转化后,易与磷酸盐、硫反应形成沉淀,这可能是铁投加作用效果不明显的重要原因. 相似文献
9.
针对厌氧生物技术处理氯酚废水驯化周期长和纳米零价铁易团聚的问题,采用压滤法制备纳米零价铁改性聚偏氟乙烯膜(nZVI@PVDF),并将其与厌氧生物体系耦合处理氯酚废水,通过序批实验探究nZVI@PVDF对耦合体系脱氯、水解酸化、产甲烷阶段的影响.结果表明,48h内,包含3种不同nZVI负载量(0.075,0.15,0.3... 相似文献
10.
考察了生物炭(BC)、酸洗生物炭(HCl-BC)和纳米零价铁负载生物炭(n ZVI-HCl-BC)对土壤中Cr(VI)还原和总Cr形态转化的影响.结果表明,生物炭对Cr(VI)还原率随土壤含水率的升高而显著提高.在较高土壤含水率(70%)条件下,各生物炭对Cr(VI)的最高还原率排序为:HCl-BC(97.26%)n ZVI-HCl-BC(88.36%)BC(87.61%).在不同Cr(VI)污染水平下(150、300、600和900 mg·kg~(-1)),HCl-BC对土壤中Cr(VI)的还原率最高.随Cr(VI)含量升高,BC和HCl-BC对Cr(VI)的还原率呈降低趋势,而n ZVI-HCl-BC对Cr(VI)的还原率为先降低后升高.形态分析表明,生物炭在不同程度上增加了土壤中Cr残渣态的比例:n ZVI-HCl-BC(11.58%)HCl-BC(9.53%)BC(1.42%),表明生物炭对土壤Cr起到稳定作用.综上,改性生物炭显著促进Cr(VI)还原及总Cr向残渣态转化,表明其具有修复Cr污染土壤的潜力. 相似文献
11.
厌氧消化被广泛应用于餐厨垃圾、有机废弃物和高浓度废水等的资源化处理,但实际应用中,厌氧消化常由于易酸化、氨氮抑制和产甲烷菌对环境因素敏感等原因,造成消化过程不稳定、产甲烷率低等问题。生物炭具备制备简单、原料来源广泛和成本低廉等优点,将其添加至厌氧消化系统中,可维持体系稳定运行和提升厌氧消化产甲烷效率。介绍了生物炭的制备方法和理化特征,并从生物炭提升厌氧消化系统缓冲能力、吸附抑制剂从而缓解氨氮抑制及其作为微生物载体等方面,对生物炭促进厌氧消化的效果和机理进行了综述。 相似文献
12.
研究了在高有机负荷(30 gVS/L,VS为挥发性固体含量)下生物炭缓解餐厨垃圾厌氧消化酸化,促进产甲烷的效应及机制.结果表明:碱性多孔生物炭在最优添加量下(1 g/gVS),反应20 d时,累积产甲烷量达到312.40 mL/(g·VS),与对照组相比提升了 101.7%,同时产甲烷停滞期缩短62%.并在酸化最严重时... 相似文献
13.
主要研究了椰子壳生物炭添加对餐厨垃圾厌氧消化的影响,选取污泥接种量、初始pH值和生物炭添加量为主要影响因素,运用最陡爬坡实验确定参数水平,然后运用响应面法,以甲烷产率作为厌氧消化过程响应指标,优化椰子壳生物炭促进餐厨垃圾厌氧消化的工艺条件。结果表明:根据实验数据建立的二次多项式数学模型具有高度显著性(P<0.0001),决定系数R~2=0.9844,说明实验值和预测值之间具有很好的拟合度。通过数值优化得到最优条件分别为污泥接种20.98%,初始pH=7.05,生物炭添加量为22.14 g/L。在该条件下,餐厨垃圾甲烷产率的预测值为331.66 L/kg,实验值为326.15 L/kg,二者相对偏差为1.69%。 相似文献
14.
抗生素对环境的危害已经引起了人们的广泛重视.本实验以改性生物炭(MB)为载体制备了负载纳米零价铁的功能生物炭(Fe/MB).以头孢噻肟(CFX)为目标抗生素,研究了该材料对头孢噻肟的降解特性及影响因素,并探讨了去除机理.实验结果表明,50 min内头孢噻肟的去除率为92%(Fe/MB用量为0.4 g·L~(-1),溶液p H=5.0,头孢噻肟浓度为20 mg·L~(-1),振荡速率为200 r·min~(-1),柠檬酸浓度为1.47 mmol·L~(-1)).头孢噻肟的去除过程存在改性生物炭的吸附和纳米零价铁还原降解的协同作用,数据符合伪二级反应动力学方程(R20.99).采用紫外可见光谱结合质谱分析了降解产物的结构并提出头孢噻肟的降解途径. 相似文献
15.
以聚乙烯亚胺(PEI)为功能单体,玉米秸秆生物炭为载体,制备了氨基改性生物炭负载型纳米零价铁(nZVI@PEI-HBC),并利用扫描电镜(SEM)、红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对材料进行了表征,分析了溶液pH、温度、材料投加量等因素对其去除Cr(VI)的影响及其去除机理.结果表明:在投加量为0.5 g·L -1,温度为20℃,pH值为5,Cr(VI)初始浓度为20 mg·L -1条件下,各材料对Cr(VI)的去除率大小为nZVI@PEI-HBC > nZVI > PEI-HBC > HBC.SEM显示nZVI颗粒较均匀地分散在生物炭表面,FTIR分析表明PEI改性后材料表面增加了氨基等重金属配位基团,这可能是nZVI@PEI-HBC去除Cr(VI)效果更好的原因.影响因素研究表明,材料具有较好稳定性,老化28 d后其Cr(VI)去除性能变化不大;酸性环境、升温、增大材料投加量均有利于nZVI@PEI-HBC对Cr(VI)的去除.机理研究发现,水中溶解氧加速了nZVI的腐蚀和Fe(II)的释放,促进Cr(VI)还原为Cr(III),然后通过共沉淀作用和氨基等基团的吸附作用被去除. 相似文献
16.
通过林可霉素菌渣的中温厌氧消化摇瓶实验,比较不同的含固率(3%、5%、8%、10%)和接种比(0.5、1、2、3)对菌渣产甲烷能力的影响,以确定菌渣厌氧消化的最优工艺条件.结果表明,在研究参数范围内,含固率越低,接种比越高,越有利于甲烷的产生;经过10d的培养,在含固率为3%、接种比为3时的工况中,菌渣的挥发性固体(VS)累计净产甲烷量最高,为106 mL/g;而含固率>5%、接种比2的液态发酵工艺,此条件既能保证厌氧消化不受消化产物(胺和挥发性有机酸)积累的抑制,也可以缓冲菌渣中残留林可霉素对消化微生物可能产生的抑制效应. 相似文献
17.
氨氮抑制是影响高含固有机固体废弃物厌氧消化产甲烷效率的重要因素.本研究通过实验室批量实验,考察了微米级零价铁对剩余污泥、热水解污泥厌氧消化的影响以及对高氨氮抑制解除的影响.结果表明,投加4 g·L~(-1)和10 g·L~(-1)零价铁对剩余污泥、热水解污泥厌氧消化过程中的产甲烷速率、迟滞时间和产甲烷潜势等动力学特征均未有影响.但是,在高氨氮抑制的厌氧消化过程中, 4 g·L~(-1)和10 g·L~(-1)的零价铁投加可使厌氧消化受氨氮抑制的产甲烷迟滞时间由对照组的18.61 d分别缩短为17.22 d和16.18 d,最大产甲烷速率(以VS计)由对照组的6.34 mL·(d·g)~(-1)提升为7.84 mL·(d·g)~(-1)和7.39 mL·(d·g)~(-1).零价铁并未通过化学反应对厌氧消化的pH缓冲体系产生直接影响,而是使氨氮抑制后的产甲烷优势古菌Methanosarcina的相对丰度(27 d)由对照组的30.71%提升到53.50%和60.30%.本研究证明了零价铁并不能提升污泥产甲烷潜势,而只是在受抑制影响的厌氧消化过程中,刺激产甲烷微生物的代谢活性,强化如氨氮抑制影响的快速解除. 相似文献
18.
为研发治理地下水Cr(Ⅵ)污染的可行除铬材料,以碳热法制得生物炭负载纳米零价铁(BC-nZVI),并通过对BC-nZVI硫化改性制备得到改性材料(M-BC-nZVI),采用除铬容量、铬铁比(Cr/Fe)、反应活性分析M-BC-nZVI的除铬优势,通过模拟柱试验建立失效速率模型,从而推算M-BC-nZVI完全失效的除铬容量,最后与相关文献数据进行对比,分析M-BC-nZVI除Cr(Ⅵ)的应用可行性。结果表明:M-BC-nZVI材料的除铬容量、Cr/Fe、拟一级反应速率常数(kobs)分别是BC-nZVI的1.86倍、1.95倍和3.00倍,因此相对于BC-nZVI来说M-BC-nZVI更具除铬优势;各模拟柱在运行过程中无明显堵塞情况,且随着进水浓度的升高,M-BC-nZVI的失效速率常数变大。当失效除铬速率为初始除铬速率的1.0%、进水Cr(Ⅵ)浓度为5 mg/L时,除铬容量最高,可以达到12.70 mg/g;对比M-BC-nZVI与其他文献报道的铁基材料及铁基改性材料的Cr/Fe可知,M-BC-nZVI的Cr/Fe为其他文献的1.06~42.06倍,故从材料的除铬性能来看,M-BC-nZVI应用于可渗透反应墙处理地下水Cr(Ⅵ)污染可行。 相似文献
19.
采用磷酸改性的黍糠基生物炭作为纳米零价铁(Nanoscale zero-valent iron,nZVI)载体,成功制备出一种高效非均相活化材料一磷酸改性生物炭负载纳米零价铁(nZVI@PBC),用来活化过硫酸盐(Persulfate,PS)降解印染废水中的典型染料—活性蓝(Reactive Blue 19,RB19)... 相似文献
20.
三氯乙烯是场地及地下水中广泛存在的典型有机污染物,生物炭基零价铁材料可用于去除地下水中三氯乙烯,然而其也会影响含水层土壤的微生物群落,进而改变三氯乙烯的归趋.通过限氧控温热解,NaOH和HNO 3改性处理,并采用球磨法合成了改性生物炭负载零价铁复合材料,研究了不同改性生物炭负载零价铁对模拟含水层土壤中三氯乙烯的去除及微生物群落的作用机制.结果表明,NaOH改性显著提高了复合材料的比表面积.NaOH改性和Fe/BC为1∶10的复合材料(BC_2处理组)对三氯乙烯的去除率最高,为90.01%.除BC_1处理组外,不同处理组均提高了土壤微生物的多样性,改变了微生物群落结构,其中芽孢杆菌属(Bacillus)、硫杆菌属(Thiobacillus)和假单胞菌属(Pseudomonas)可能是三氯乙烯的降解菌属.BC_2处理组增加了土壤中硫杆菌属和假单胞菌属的相对丰度,有利于三氯乙烯的降解.类诺卡氏菌属(Nocardioideas)、Thermincola、溶杆菌属(Lysobacter)、Gemmatimonas、Microvirga和假单胞菌属维持了微生物群落结构的稳定.微... 相似文献
|