首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The process of selective nitrate removal from drinking water by means of ion exchange was studied. A commercial strong base anion exchanger with triethylammonium (-N+Et3) functional groups was used in the bicarbonate (HCO3-) and carbonate (CO3(2-)) form. The aim of this study was to optimize ion-exchanger regeneration in view of the subsequent electrochemical reduction of nitrates in the spent regenerant solution. The effects of ion-exchanger form, concentration of regenerant solution, and presence of nitrates, chlorides, and sulphates in the regenerant solution were studied. The strong base anion exchanger in HCO3- form that was investigated was able to treat 270 bed volumes of model water solution containing 124 mg dm(-3) nitrates. To achieve adequate regeneration of the saturated anion exchanger, it is necessary to use approximately 30 bed volumes of fresh 1-M sodium bicarbonate (NaHCO3) regenerant solution. The presence of residual 50-mg dm(-3) nitrates in the regenerant solution, treated by electrolysis, resulted in an increase in the dose of regenerant solution to 35 bed volumes and a decrease in the subsequent sorption run of approximately 13%. The volume of applied regenerant solution was high, but the consumption of NaHCO3 for regeneration was low.  相似文献   

2.
A highly active electrocatalytic electrode for nitrate reduction was prepared by the electro-deposition of palladium onto a copper electrode. The capacity of nitrate reduction by a palladium-modified copper electrode has been studied using cyclic voltammetry (CV). The existence of a reduction peak at -0.605 V versus saturated calomel electrode in 0.1-M sodium nitrate + 0.1-M perchloric acid solution (pH = 0.86) can be found in the CV measurement. The influence of solution properties, such as pH, nitrate concentration, and other anions in solution, on nitrate reduction was determined in detail. Results showed that nitrate reduction was suppressed in alkaline solution, while it was beneficial to nitrate reduction in acid or neutral solution. At low nitrate concentrations (0.01 to 0.5 M), nitrate reduction current increased with increasing nitrate concentration, but was hindered by sulfate. At high nitrate concentrations (1 to 5 M), no significant difference on nitrate reduction was observed. Compared with other different electrodes prepared in our work (copper, titanium, and palladium-modified titanium electrodes), the palladium-modified copper electrode showed the highest electrocatalytic capacity and stability in the nitrate-reduction process.  相似文献   

3.
This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.  相似文献   

4.
电化学脱硝过程参数的响应曲面优化研究   总被引:1,自引:0,他引:1  
以Ti/IrO2-TiO2-RuO2为阳极,Cu/Zn合金电极为阴极,在无隔膜电解池中对这一新构造电极对的脱硝氮性能进行了研究。为了有效结合阴极硝氮还原能力和阳极氧化能力,采用响应曲面法中的Box-Behnken设计优化了对电化学脱硝过程有显著影响的4个重要因素:氯化钠含量、电流密度、pH和初始硝氮浓度。优化结果表明,相对于pH和初始硝氮浓度,氯化钠含量和电流密度对脱硝性能影响更大,而阴极硝氮还原性能主要受初始硝氮浓度、pH的影响。以6 h内电极对脱氮百分率为响应量,优化得最佳电化学脱硝过程参数为:氯化钠含量,1 g/L;电流密度,24.99 mA/cm2;pH,1.81;初始硝氮浓度100 mg/L。在此实验条件下,6 h内电极对脱氮百分率预测值为99.84%。通过3次重复验证实验,确认实际6 h内电极对脱氮百分率为91.34%。预测值与实测值两者相差不大,由此可知,Box-Behnken设计是一种优化电化学脱氮实验参数的有效方法,经过优化后的电极对具有较佳的脱氮效率。  相似文献   

5.
电化学降解与声电化降解苯胺溶液的对比实验研究   总被引:2,自引:0,他引:2  
采用电化学和声电化两种方法处理苯胺溶液.考察了处理时间、苯胺浓度、pH、电解质浓度、电解电压等因素对苯胺降解率的影响,并对两种方法处理的溶液分别进行紫外分析。实验结果表明.在其他条件相同的情况下.声电化降解所得苯胺降解率远远大于采用电化学方法所得降解率。  相似文献   

6.
以毡状活性炭纤维为阳极,不锈钢为阴极,吸附-电化学氧化耦合降解对氯苯酚废水进行了研究。考察了吸附或耦合电化学氧化过程、电流密度、支持电解质硫酸钠浓度和活性炭纤维重复使用对废水COD去除率的影响,结果表明,采用吸附-电化学氧化耦合方法,当电流密度7.6 mA/cm2支持电解质(硫酸钠)浓度为1 g/L,处理时间为180 min,4-CP废水COD去除率可达97.09%。毡状活性炭纤维对4-CP的静态吸附过程符合Langmiu吸附等温方程。建立了吸附-电化学氧化COD去除动力学模型,动力学模型参数表明,对于COD的去除,电化学氧化作用比吸附作用大。  相似文献   

7.
The removal performance of typical refractory organic compounds in landfill leachate was investigated during the electrochemical (EC) oxidation and anaerobic process combined treatment system in this paper. The results indicated that the treatment of landfill leachate by the combined system was highly effective. The toxicity of leachate was notably decreased after the electrochemical oxidation process and the biodegradability was improved. The concentration of the organic acid with low molecular weight in the leachate increased from 28% to 90% based on the biodegradability assays after the EC oxidation process. The anaerobic digestion could further remove the residual organic compounds. At a hydraulic retention time (HRT) of 16 hours and an organic loading rate (OLR) of 8 kg COD/m3 d, the concentration of COD, SS, ALK, VA, N-TKN, N-NH4+ and P-PO4(3)- [corrected] in UASB effluent were 532, 12, 6744, 400, 540, 455 and 11.6 mg/L, respectively, with approximately 90% removal efficiency of COD. The organic compounds in the landfill leachate revealed different degradation characteristics in the combined system. p-chloroaniline, bisphenol A, 6-methyl-2-phenyl-quinoline, dimethylnaphthaline and N'-(2-methyl-4-chlorophenyl)-N-cyclohexyformamidine, classified into the first group in this paper, were completely removed by the EC oxidation and did not reappear in the effluent of the UASB reactor. Phenylacetic acid, 3-methyl-indole and N-cyclohexyl-acetamide, called the second group, were completely removed, but reappeared in the UASB reactor. 4-methyl-phenol, 3,4-dihydroisoquinoline, 2(3H)-benzothiazolone, exo-2-hydroxycineole and benzothiazole, the third group, were degraded little in the EC oxidation process, but extensively removed by the anaerobic process. Benzoic acid, benzenepropanoic acid and 2-cyano-3,5-dimethyl-1-hydroxypyrrole, the fourth group, concentration obviously increased in the EC process, but was completely removed in the UASB reactor. The content of volatile fatty acids (VFAs) markedly increased from 0.68% in the leachate to 16.18% in the effluent from the electrochemical oxidation process (EC(effl)). In addition, the degradation rate of organic compounds from the landfill leachate was different in the EC oxidation and anaerobic process.  相似文献   

8.
The investigation presented here focussed on the electrochemical decolourisation of a commercial, textile indigo dye, in an undivided electrochemical cell using graphite electrodes. The decolourisation values obtained employing halide salts--sodium chloride, potassium bromide and potassium iodide--and a reductive agent--sodium meta-bisulphite--as electrolytes are higher than those attained when no electrolyte was used. The highest decolourisation value at a low level of electric power consumption was obtained with sodium chloride. Besides, this electrolyte is usually found in the coloured wastewaters of textile industry. Thus, a detailed study was carried out to determine the influence of electrolyte--sodium chloride--and dye concentration on the efficiency of the process expressed in terms of energy consumption and extension of the decolourisation reaction. The scale-up of the treatment with sodium chloride was satisfactorily tested in a 20 l cell.  相似文献   

9.
An innovative process that combines soil electrokinetic remediation and liquid electrochemical oxidation for the degradation of organic compounds present in a polluted soil was developed and evaluated by using benzo[a]pyrene spiked kaolin. In order to increase benzo[a]pyrene solubility during electrokinetic treatment, the addition of a co-solvent or surfactant, such as ethanol or Brij 35, as flushing solution was tested. The research carried out demonstrated the influence of the desorption agent employed on benzo[a]pyrene remediation from the kaolin matrix. Thus, if the flushing solution was ethanol at 40%, there was no presence of contaminant in either chamber. On the contrary, when a solution of surfactant Brij 35 was used, benzo[a]pyrene was transported towards the cathode chamber, where it was collected. Moreover, the extent of this recovery depends on the pH profile on the soil. When no pH control was used, around 17% of initial contaminant was detected in the cathode chamber; however, when pH control was applied, the recovery of benzo[a]pyrene could be higher than 76%, when the pH control in the anode chamber was set at 7.0.In order to obtain the total degradation of mobilised benzo[a]pyrene from the contaminated soil, the liquid collected by electrokinetic remediation was oxidised by electrochemical treatment. This oxidation was accomplished via an electrochemical cell with a working volume of 0.4 L, and graphite as electrode material. The benzo[a]pyrene was almost totally degraded in 1 d, reaching a degradation of about 73% in 16 h.  相似文献   

10.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption.  相似文献   

11.
This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 ?) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl? led to the formation of oxychlorinated anions (mostly ClO3 ? and ClO4 ?) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.  相似文献   

12.
以钛基氧化物涂层材料(Ti/SnO2-Sb2O5-IrO2)为阳极,碳纳米管修饰的石墨(GE—CNT)为阴极构建电化学系统进行硝酸根(NO3-)去除研究,考察了阴极材料、阴极电位和pH值对电化学法去除水中NO[的影响,同时检测了铵离子(NH4+)和亚硝酸根(NO2-)的生成量。结果表明,利用碳纳米管修饰的石墨阴极可获得较好的硝态氮去除效果;随着阴极电位负移,NO3-去除率随之升高;酸性条件下NO3-去除率最高,NH;生成量也更多。对于由NO3-转化产生的NH4+,在氯离子存在条件下再次进行电化学处理120min,其去除率可达97.1%。  相似文献   

13.
Recovery of precious metals by an electrochemical deposition method   总被引:2,自引:0,他引:2  
Paul Chen J  Lim LL 《Chemosphere》2005,60(10):1384-1392
Conversion of soluble precious metals into a solid form for further reuse was studied by using an electrochemical deposition approach. It was found that the metal recovery followed a first-order reaction kinetics. The distance between the electrodes had no much impact on the recovery, while higher mixing led to faster kinetics. The presence of humic acid (HA) with lower concentration (<20mg l (-1)) did not have impact on the recovery. When its concentration was increased to 50 mg l (-1), it decreased the metal reduction. Presence of ethylene diamine tetraacetic acid (EDTA) and ionic strength slightly reduced the copper recovery rate. Around 50% removal of for HA and EDTA was achieved. In the competing environment, metal recovery was in the following order: silver>lead>copper. X-ray photoelectron spectroscopic and scanning electronic microscopic analysis of the reduced metals demonstrated that the depositions were composed of mainly elemental metals together with their oxides which were due to the oxidation.  相似文献   

14.
The need to improve on-site wastewater treatment processes is being realized as populations move into more environmentally sensitive regions and regulators adopt the total maximum daily load approach to watershed management. Under many conditions, septic systems do not provide adequate treatment; therefore, advanced systems are required. These systems must remove significant amounts of biochemical oxygen demand (BOD) and suspended solids, and substantially nitrify, denitrify, and remove phosphorus. Many existing advanced on-site wastewater systems effectively remove BOD, suspended solids, and ammonia, but few substantially denitrify and uptake phosphorus. The purpose of this research was to design and test modifications to an existing on-site wastewater treatment system to improve denitrification and phosphorus removal. The Nayadic (Consolidated Treatment Systems, Inc., Franklin, Ohio), an established, commercially available, extended-aeration, activated sludge process, was used to represent a typical existing system. Several modifications were considered based on a literature review, and the option with the best potential was tested. To improve denitrification, a supplemental treatment tank was installed before the Nayadic and a combination flow splitter, sump, and pump box with a recirculation system was installed after it. A recirculation pump returned a high proportion of the system effluent back to the supplemental treatment tank. Two supplemental treatment tank sizes, three flowrates, and three recirculation rates were tested. Actual wastewater was dosed as brief slugs to the system in accordance with a set schedule. Several ion-exchange resins housed in a contact column were tested on the effluent for their potential to remove phosphorus. Low effluent levels of five-day biochemical oxygen demand, suspended solids, and total nitrogen were achieved and substantial phosphorous removal was also achieved using a 3780-L supplemental treatment tank, a recirculation ratio of 5:1, and a fine-grain activated aluminum-oxide-exchange media. Good results were also obtained with an 1890-L supplemental treatment tank and a recirculation ratio of 3:1. The most significant benefit of the supplemental treatment tank, in combination with the recirculation system, appears to be the low nitrogen concentration dosed to the Nayadic. By reducing the nitrogen concentration and spreading out its mass over time during no-flow periods, the Nayadic's inherent low-level denitrifying capacity was more closely matched and effective treatment was achieved.  相似文献   

15.
In this work, it has been studied the use of conductive-diamond electrochemical oxidation (CDEO) as a refining technology to assure the quality of the effluents of door manufacturing processes (DMP). To do this, the raw effluents of these factories have been treated by a combination of physicochemical, biological and CDEO treatments. CDEO was found to be a feasible alternative to the refinement of a wooden DMP waste. It can successfully decrease the organic load of the effluents of the biological oxidation with low energy requirements. In addition, in case of incidents in the biological process, CDEO can treat successfully the effluents of the coagulation process. The effluents of the biological treatment have also been treated by CDEO in order to check the possible use of electrochemical technology to increase the biodegradability of the effluents and their possible recycle to the biological treatment. Unfortunately, electrochemical technology was found to be not adequate to increase the biodegradability of the effluents of a biological treatment. The hard oxidation conditions generated during CDEO do not lead to the accumulation of intermediates but to the almost direct formation of carbon dioxide. Lowering the current density or changing the electrodes can not enhance the biodegradability of the effluents of an electrochemical cell.  相似文献   

16.
The mediated electrochemical oxidation (MEO) process using cerium(IV) in methanesulphonic acid (MSA) as the oxidizing medium was employed for the mineralization of phenol in batch and continuous feeding modes. Although nitric acid was an extensively studied electrolyte for organic mineralization reactions in MEO processes it does possess the problem of NO(x) gas production during the reduction of nitric acid in the cathode compartment of the electrochemical cell. This problem could be circumvented by proper choice of the electrolyte medium such as MSA. The mediator cerium in MSA solution was first oxidized to higher oxidation state using an electrochemical cell. The produced Ce(IV) oxidant was then used for the destruction of phenol. It was found that phenol could be mineralized to CO2 by Ce(IV) in MSA. The evolved CO2 was continuously measured and used for the calculation of destruction efficiency. The destruction efficiency was observed to be 85% based on CO2 evolution for 1000 ppm phenol solution at 80 degrees C in continuous feed mode.  相似文献   

17.
电化学氧化法去除微污染水中的氨氮   总被引:1,自引:1,他引:0  
以低氯离子浓度下微污染水中的氨氮(NH4+-N)为研究对象,采用电化学氧化法对污染水中的氨氮进行去除。通过静态和正交实验得到了极板的最佳运行参数。实验结果表明:Cl-浓度在各影响因素中对NH4+-N去除影响最大,且在其他影响因素不变的条件下,通过改变电解电流是解决动态运行时NH4+-N去除率下降较经济有效的方法。最佳运行工艺条件为:电流密度10 mA/cm2,电解时间10 min,极板间距1 cm,溶液初始pH为7,Cl-浓度100 mg/L,面体比102 m2/m3,氨氮的平均去除率在80%以上。  相似文献   

18.
The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l?1, along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium’s components, including that of the distillate resulting from the nitric acid rectification operation.  相似文献   

19.
Zhou M  Lei L 《Chemosphere》2006,65(7):1197-1203
Three-phase electrochemical reactor is still far from concerned in wastewater treatment in order to improve electrochemical treatment efficiency especially when the concentrations of organic pollutants are relatively low. This paper presents a novel process integrated electrocatalysis and activated carbon (AC) adsorption in a fluidization mode for p-nitrophenol (PNP) abatement, with special attention on probing the role of AC. Sparged by external gas (e.g., O(2)), the electrochemical reactor is actually a three-phase (gas, liquid, solid) reactor. By this one-step integrated process, the treatment efficiency was significantly promoted where PNP of initial concentration 150 mg l(-1) could be completely removed in no more than 30 min and it kept good performance for five consecutive runs, showing potential application for environmental remediation. In the integrated process, AC is in a dynamic state of adsorption and in situ electrochemical regeneration by the attack of electrogenerated hydroxyl radical on organic pollutants. When oxygen is sparged into the process, hydrogen peroxide can be formed by cathodic reduction and then decomposed by catalytic reaction on AC, which further promotes organic pollutants degradation.  相似文献   

20.
A series of lead dioxide electrodes developed on titania nanotube arrays with different matrix were fabricated by electrodeposition. Before the deposition of PbO2, the matrix of this anode was electrochemically reduced in (NH4)2SO4 solution and/or pre-deposited with certain amounts of copper. To gain insight into these pretreatments, the PbO2 electrodes were characterized by SEM, LSV, and XRD, and their electrocatalytic activities for pollutant degradation were compared using p-nitrophenol (p-NP) as a model. It was confirmed that the electrochemical reduction with (NH4)2SO4 resulted in the partial conversion of TiO2 into Ti4O7 and Ti5O9, which increased the conductivity of PbO2 anode, but decreased its electrochemical activity, while the Ti/TNTs*-Cu/PbO2 electrode with both pretreatments possessed the highest oxygen evolution overpotential of 2.5 V (vs. SCE) and low substrate resistance. After a 180-min treatment on this electrode, the removal efficiency of p-NP reached 82.5 % and the COD removal achieved 42.5 % with the energy consumption of 9.45 kWh m?3, demonstrating the best performance among these electrodes with different matrices. Therefore, this titania nanotube array-based PbO2 electrode has a promising application in the industrial wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号