首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以有机固体废弃物 (废棉絮、废纸 )为原料 ,在管式炉热解反应器热解生产脱水内醚糖。研究了热解温度对热解产物相态分布的影响。同时 ,利用HPLC对脱水内醚糖的产量进行了测定。HPLC分析结果表明 :热解液水相中主要化学物质是乙酸 ,而非水相中主要化学物质是脱水内醚糖  相似文献   

2.
热解柚子皮吸油材料的制备及性能   总被引:1,自引:0,他引:1  
热解处理柚子皮,制备吸油材料,当热解温度为400℃、热解时间为3 h时吸油倍率最高,达16.9 g/g,3 min内达到吸附饱和。对热解前后柚子皮的FTIR 和热重分析,热解损失的主要是纤维素和半纤维素。对热解前后柚子皮的比表面和电镜分析,热解之后的柚子皮呈三维网状结构,孔径增大明显,吸油倍率的提高主要是因为孔径的增大。  相似文献   

3.
微波辐射对生物质热解过程的影响   总被引:2,自引:0,他引:2  
自行设计加工了微波热重实验装置,研究了在微波辐射下菜籽粕热解过程特征及其产物产出规律.在此基础上,对比分析了菜籽粕微波热解与电热热解产物产出率之间的差异.结果发现,在菜籽粕微波热解过程中,半纤维素的反应区间为180 ~ 370℃,其转化率可以达到87.0%;纤维素的热解反应区间为370 ~ 550℃,其热解转化率32.8%.表明在微波作用下,纤维素的热稳定性远高于半纤维素.在菜籽粕的微波热解过程中,冷凝液的产生主要集中在100 ~400℃的温度范围内,热解得到的生物质油类主要是菜籽粕的半纤维素热解生成的.不凝气的产生主要集中在300 ~ 600℃的温度范围内,并且主要为纤维素与木质素的热解反应产生的.与电热方式相比,菜籽粕的微波热解升温速率较快,菜籽粕微波热解生物质炭的产出率较高,冷凝液产出率相对较低.  相似文献   

4.
采用固定床反应器对脱水污泥在热解过程中N、P、K及重金属的迁移行为进行了研究,以期获得营养元素N、P、K含量较高、重金属含量较低的生物炭,将其作为土壤肥料。结果表明,污泥样品中N主要以铵盐-N、蛋白质-N、吡咯-N、吡啶-N 4种形态存在,其中吡咯-N占总氮的45.22%,热解后各组分在生物炭中所占比例发生变化,其中吡咯-N的减少较为明显,800℃的污泥炭中减少到3.24%。随着热解温度由400℃升高到800℃,N在污泥炭中的含量逐渐降低,气相中的含量明显增加,但液相中在600℃后减少;P和K几乎全部集中在污泥炭中,其中400℃污泥炭中的P主要以焦磷酸盐形式存在、800℃时则主要以偏磷酸盐存在;重金属在污泥炭中出现不同的富集,其富集程度顺序为:Cu>Ni、As>Pb、Cr> Zn> Cd。  相似文献   

5.
印刷线路板废弃物的热解与动力学实验研究   总被引:2,自引:0,他引:2  
分别应用管式炉反应器和热重分析手段对印刷线路板废弃物的热解行为和热解动力学进行了实验研究。在管式炉中,研究不同的热解温度:700~950℃,对产物分布和气体成分分布的影响。实验结果表明:PCB热解气体的主要成分是H2和CO2,气体的热值较低,仅为2.09~5.41MJ/m^3,PCB不适合以气体产物为目标的能源利用方式。应用Friedman方法对PCB的热解动力学进行了研究,求得PCB的热解动力学参数分别是:表观活化能190.92kJ/mol,反应级数5.97,指前因子lnA47.14min^-1。  相似文献   

6.
固体废物在固定床内热解焦油的实验研究   总被引:1,自引:0,他引:1  
在小型固定床热解炉内对部分固体废物进行的热解实验,目的是研究所得的热解产物中焦油(含水)的产量及其物理化学特性。结果表明,物料挥发分和水分含量越高,焦油(含水)的产量就越多;焦油(含水)的产率随热解终温的升高呈先升后降的趋势;焦油(含水)密度很大,但其随热解终温的升高而下降;同时,部分废弃物的焦油(含水)热值较高,饱和烃的含量很高,有很高的利用价值。  相似文献   

7.
热解温度和时间对污泥生物碳理化性质的影响   总被引:2,自引:0,他引:2  
污泥热解制备生物碳是一种环境友好的污泥处理处置途径。重点考察了热解温度及时间等因素对生物碳品质的影响。污泥取自厦门某城市污水处理厂脱水污泥(初始含水率为80%),热解实验结果表明,随着热解温度的升高(从300~700℃),热解时间的增加(2~4 h),生物碳产率均下降;低温热解时(300℃),生物碳偏酸性,而高温热解时(700℃),生物碳偏碱性;生物碳N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提实验结果表明,高温热解能降低污泥生物碳中微量元素的有效性。  相似文献   

8.
为了探讨茉莉花茶废弃物的热解过程及温度对产物的影响,采用固定热解反应器和热重红外联用仪(TG-FTIR)对其进行了研究,结果表明,茉莉花茶废弃物解产生的固体量随温度升高而降低,气体产量随温度升高而增加,热解得到的液体量比例随热解温度不同而不同,表明茉莉花茶热解产物随热解温度不同而不同。热解产物主要有CO2、水、醇及含CC 的有机物和生物焦固体。500 ℃下制得的生物焦比表面积较低,仅为0.720 9 m2·g-1,经活化处理后的生物焦比表面积明显增大。经CO2和H2O活化后得到的生物焦的BET比表面积分别升至139.503 3 m2·g-1和122.527 6 m2·g-1。茉莉花茶热解的质量损失主要由于有机物挥发,用Coats-Redfern法对茉莉花茶废弃物热解过程进行模拟,得热解过程符合气体扩散模型,热解活化能约为60 kJ·mol-1;因此,气体扩散是茉莉花茶废弃物热解过程中主要的限制因素。  相似文献   

9.
固体废弃物轮胎的热解技术   总被引:9,自引:1,他引:9  
综述了国内外对废轮胎的处理状况,并详细地讨论了废轮胎热解技术的发展、分类以及典型工艺流程。热解技术主要包括油化技术、气化技术和炭化技术三种,并可制得衍生油、燃料气、碳黑等产品。分析了废轮胎热解工艺存在的问题,指出了如何开发环境友好的集成工艺是废轮胎热解工艺的发展方向。  相似文献   

10.
为实现城市生活垃圾减量化、无害化和资源化,采用热重分析天平和实验室固定床热解反应器进行城市生活垃圾(MSW)与园林废弃物共热解实验,研究了不同热解终温、松树枝和柳树枝添加比例对热解产物产率影响,并利用气质联用色谱分析仪(GC-MS)对热解油进行表征分析。实验结果表明:MSW、松树枝和柳树枝的热解过程均可以分为3个阶段,主要包括脱水、热解、炭化;MSW、松树枝和柳树枝单独热解时最大失重速率分别出现在321.48、358.23和377.83℃;MSW与松树枝共热解DTG曲线在热解反应第2阶段有2个析出峰,分别在342.32℃和471.48℃,比MSW单独热解时,失重率增加了7.29%。当城市生活垃圾与松树枝、柳树枝的添加量分别为3:1时,热解液体产物产率明显升高,热解油中醇类、羧酸类、醛类等含氧有机物的含量降低,热值增加,热解油中氧含量降低,且松树枝对共热解焦油的脱氧效果更为显著,热解油品质得到提升。  相似文献   

11.
废弃聚基丙烯酸甲醋(PMMA)的增长及无序堆放会对环境造成严重影响。流化床热裂解技术代表了PMMA处理技术的发展方向。在实验室规模的流化床热解装置上,对PMMA的原料特性、加热方式和温度等多因素对其热解的影响进行了研究。结果表明,PMMA的热解产物主要是气体和液体MMA,液体最大得率为91.8%。在400℃以上时,随着热解温度的升高,CO2和CO的含量增加,而MMA含量下降;采用流化气体预热方式或减小PMMA粒径的操作方式,有利于热解强度和液体产率的提高。  相似文献   

12.
印刷电路板基材的热解实验研究   总被引:19,自引:1,他引:18  
采用热重法对废旧印刷电路板(PCB)在氮气气氛下进行了不同升温速率的热解实验,发现电路板的热解可以分为以下几个阶段:在300℃以下时质量没有什么变化,在300~360℃时质量急剧减少,在360~1000℃时质量减少得比较缓慢。随后本文对电路板的热解进行了动力学回归。研究表明,样品热解反应分为2个阶段,这2个阶段反应过程中的活化能有很大差别,说明这2个阶段受不同的化学反应机理控制。  相似文献   

13.
为探讨生活垃圾和玉米秆共热解过程中的协同关系和产物分布,采用热重分析仪对生活垃圾、玉米秆及其混合物进行了热解实验研究,并进行动力学计算。结果表明,混合热解可分为脱水、热解、炭化、焦催化气化4个阶段,前3个阶段与单独热解过程类似,第4个阶段与单独热解相比失重明显增加,表明混合热解过程中存在协同效应;混合物热解的实际活化能为28.492 kJ/mol,低于单独热解及其混合物热解理论活化能,可见混合热解利于热解反应进行。为明晰混合热解对热解反应的促进作用,利用固定床热解实验,研究了混合比例对产物产率和热解气各组分产率的影响。结果表明,在不同混合比例下,固液实际产率低于理论值,而气体实际产率则比理论值高;混合物料热解气中H2、CH4、CO2产量均高于其理论值,而CO产量却相反,低于其理论值。  相似文献   

14.
生物炭中溶解性碳黑(DBC)具备强迁移性,其理化性质会随着原生质和热解条件的变化而改变。菲具有强生态毒性及致癌特性。以4种DBC(源于花生壳原生质及其200、400、500℃下热解得到的生物炭)为吸附剂,探究了它们的理化性质及对菲的吸附行为和作用机制。结果表明:(1)随着热解温度的升高,花生壳生物炭中DBC的总有机碳(TOC)含量减少。200℃热解得到的生物炭DBC芳香性最强,对菲的吸附能力也最强。(2)随着热解温度的升高,DBC中会形成更多的酚羟基和醚键,而脂肪族碳链、醇或酯会逐渐断裂。  相似文献   

15.
为实现含油污泥的资源化利用,以罐底油泥为研究对象并以油回收率为考核指标,对热解终温对油泥三相产物的影响进行了研究。结果表明,最佳热解条件是:升温速率为10 ℃·min−1、载气中最佳氧气体积分数为4.2%。在400~800 ℃范围内,随着温度的升高,回收的热解油产率由16.43%提升至21.46%,后又降至14.15%;热解气产率由9.12%提升到了27.87%,热解残渣中可回收组分含量由39.1%降至16.5%。热解油中主要为轻质组分,油的品质较高;热解气中主要成分为CO2和CO,且温度越高可燃气比例越高。对热解残渣进行电镜分析发现,渣体表面没有结焦现象,残渣表现出良好的吸附性能。本研究可为含油污泥热解处理资源化提供参考。  相似文献   

16.
采用旋转管式加热炉实验台在惰性条件下对城市污泥进行了热解实验,系统研究了不同热解温度对气态产物和固态产物成分的影响。结果表明:污泥经热解后的产物在600℃时,比表面积最大值为158.02 m2/g,孔容最高为109.58 mm3/g。随着热解温度的升高,气态产物和液态产物的产率增加,而固态产物则减少。在热解温度450~750℃,热解产物中的固态产物产率由53.65%降至31.69%;气体产率从11.23%升至24.74%,其中H2、CO、CO2、CH4、C2H4、C2H6和C2H2占总气体的75%以上,H2含量随着热解温度的升高而升高。热解气中小分子碳氢化合物含量较高,600℃时热解气体中含氢气体主要包括:H2、CH4、C2H4、C3H8、正丁烷(C4H10)及C2H6等,其中H2和CH4含量分别为27.98%和23.63%。CH4、C3H8、C4H10等气体的含量随着热解温度的升高呈现先增后减趋势,且在600℃达到最大值,C2H2、C2H6在450℃时其浓度最高。随着热解温度的升高,N、C和H 3种元素在热解固态产物中的质量分数呈明显下降的趋势。  相似文献   

17.
为了污泥与煤混合热解的实验研究及工程化应用提供初步的数据及理论支持,利用热重分析仪讨论了污泥与煤混合热解的主要影响因素(加热速率、热解终温及混合比例)以及动力学参数。结果表明:加热速率对污泥热解影响较小;混合物热解终温与煤的热解终温基本一致;煤在污泥(干基)中的添加比例小于50%有利于挥发分的产出;通过热解特性及动力学参数分析,得出混合物比单一物料更易分解,且两者存在一定的协同效应;建立了污泥与煤不同混合比例在有机质主要热解区间内的经验动力学方程,经具体混合比例验证,经验动力学方程推导出的动力学参数及TG曲线与实际实验结果吻合较好。  相似文献   

18.
研究了MgNH4PO4.6H2O(简称MAP)沉淀在NaOH存在条件下的热解行为,并考察其热解产物的氨氮吸附性能。结果表明,MAP在NaOH存在条件下热解时可将水和氨释放出来,其X射线衍射(XRD)谱图中主要出现无定形的MgNaPO4,但在吸附氨氮后,则主要出现MAP的特征衍射峰;在MAP与NaOH摩尔比为1.0∶1.0、热解温度为100℃、热解时间为2h的条件下热解MAP较适宜,其热解产物可循环用作氨氮的处理药剂,氨氮吸附反应体系初始pH在8左右较为适宜,在此条件下反应20min对氨氮的去除率就达98%以上。  相似文献   

19.
餐厨垃圾中典型组分的裂解液化特征研究   总被引:1,自引:1,他引:0  
利用实验室规模的实验装置管式加热炉进行餐厨垃圾热解实验,实验分析了反应温度对餐厨垃圾热解产物分布的影响,米饭、白菜、猪肉、塑料和纸5种原料在最佳温度下可实现热解油质量产率的最大化,分别为45.02%、24.55%、61.19%、73.77%和24.86%。其中,米饭和白菜热解油含水率较高,可达到30%~40%,将含水率降到15%后,测定热值分别为25.51 MJ/kg和17.75 MJ/kg。塑料和纸混合热解时,塑料热解过程的放热效应可缩小纸的热解温度区间,增加热解油产量。红外光谱分析厨余热解油包含多种含氧有机物。通过气质联用仪(GC-MS)分析塑料热解油和塑料与纸混合热解油在180℃以下蒸馏出的液相产物,主要组分为烷烃和烯烃,从成分和热值分析,与汽油、柴油相近。  相似文献   

20.
利用污泥热解-自源炭重整的方式获得高品质的燃气和油,为了实现更高的气、油转化率,在600 ℃的重整条件下,对比了污泥在450~600 ℃内不同热解温度下产生的热解挥发分利用自源炭催化重整后的气、油产量与特性,同时考察了自源炭生成方式的影响。研究结果表明,550 ℃下污泥热解产生的热解液产量最高,同时最容易被炭催化裂解,但是因积碳使得污泥转化为气、油的产率不高。600 ℃下热解产生的挥发分经过重整后获得最高的气体转化率与热值,但也存在积碳问题。与一步升温到600 ℃的热解炭相比,不同温度下的热解炭继续被加热到600 ℃所获得的分步热解炭更符合连续化操作要求,但其重整效果总体上不如前者好;而热解温度在450 ℃时例外,450 ℃的热解炭继续升温至600 ℃并重整450 ℃热解挥发分,能够获得最高的气、油产率并减少碳沉积。在实际情况下的热解-重整连续化操作中推荐热解温度为450 ℃以及重整温度为600 ℃,以获得高值产物并降低对热解装置的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号