首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

2.
The spring zooplankton community in the Strait of Georgia (British Columbia, Canada) is characterized by the presence of several calanoid copepod species which collectively make up ~90% of the mezozooplankton biomass. Here, we investigate interspecific, interannual, and geographic variability in the diets and trophic positions of these copepods using a combination of fatty acids and stable isotopes. To characterize geographic variability in diet, we compare our findings from the Strait of Georgia with similar data from Ocean Station P in the subarctic northeast Pacific. Both fatty acid and stable isotope signatures indicate the existence of three trophic levels, even within the limited size range of these copepods: Neocalanus plumchrus and Calanus marshallae are primarily omnivorous, while Euchaeta elongata is carnivorous and Eucalanus bungii is herbivorous. Fatty acid markers of trophic position (e.g., DHA/EPA, 18:1n-9/18:1n-7) correlate significantly with δ15N, while markers indicating the proportion of diatoms to flagellates in the diet (e.g., 16PUFA/18PUFA and DHA/EPA) correlate significantly with δ13C, after the effect of lipid concentration on δ13C is accounted for. Despite the general correlation between stable isotopes and fatty acids, the former are not sensitive enough to capture the range of interannual variability observed in the latter, and can only capture substantial shifts in the diet over geographic scales. However, regardless of variability in food quality, the relative trophic positions of these copepods do not change significantly either spatially or temporally.  相似文献   

3.
M. Pagano  R. Gaudy 《Marine Biology》1986,90(4):551-564
The feeding activity of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in 1978–1979 using various foods (natural particles, monospecific algal cultures, and artificial food) under different conditions of temperature and salinity. Experiments with Amphidinium sp. or Tetraselmis maculata as food showed that the ingestion rate increased with food concentration according to an asymptotic or a linear relationship. Although of slightly smaller size, T. maculata was ingested at a higher rate than Amphidinium sp. Large maximum daily rations (up to 150% of body carbon with Amphidinium sp. and up to 250% with T. maculata) were attained. These values, which greatly exceed those generally obtained with marine copepods, could result from adaptation of the feeding processes of this copepod to its very rich trophic environment. A significant correlation was demonstrated between ingestion rate and fecal pellet production using T. maculata as food. Therefore, daily fecal production was used as an index of feeding activity in experiments carried out with natural food, T. maculata cultures and artifical food (Tetramin). Increased temperature generally resulted in an activation of grazing and filtration rates and of fecal production at low temperatures (10° to 15°C), but a strong decrease was observed over 22°C. Differences of 10 S over or under the natural salinity level led to a decrease in fecal production, suggesting unachieved acclimatization to salinity variation due to a too short acclimation period before the experiments. Fecal pellet production was higher during the day than during the night. It depended also on the quality of food used: high values were obtained with T. maculata, Phaeodactylum tricornutum, Rhodomonas sp. and Chlamydomonas sp., low values with Chlorella sp. and Amphidinium sp., and medium values with natural food material. The assimilation rate (A) was calculated by Conover's methods. A significant negative correlation was obtained between A and the ash content of the food. High assimilation rates were attained with chlorophycean algae, while natural particulate food produced variable assimilation rates, depending on the amount of inorganic material present.
Biologie d'un copépode des mares temporaires du littoral méditerranéen français: Eurytemora velox
  相似文献   

4.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

5.
Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.  相似文献   

6.
Acartia tonsa Dana is a dominant copepod in coastal waters and is therefore an important link in the food web between microplankton and higher trophic levels. RNA:DNA ratios have been used to describe growth and nutritional condition of field-collected copepods and to show strong correlation between RNA:DNA ratios and group egg production (EP). A method was developed using a sensitive, nucleic acid-specific fluorescent dye, and automated microplate fluorometer to measure DNA, RNA, and the RNA:DNA ratio of individual A. tonsa. DNA, RNA, and RNA:DNA ratios and EP were all significantly higher in copepods fed Thalassiosira sp. compared to starved copepods. There was a general trend toward an increase in RNA:DNA ratios with increase in EP, but due to the high degree of variation in both RNA:DNA ratios and EP among individual copepods there was no significant correlation between RNA:DNA ratios and EP. Significant differences in RNA:DNA ratios between fed (7.2) and starved (3.3) copepods were found after 2 days. This assay may be applied to other species of copepods sampled in the field to provide an index of the health of planktonic food webs.  相似文献   

7.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

8.
Many free-living copepods produce and store lipids prior to entering diapause (long-term dormancy). Heteropsyllus nunni Coull is the only marine harpacticoid copepod known to undergo any form of diapause. This study presents the first information on the types of lipids and fatty acids produced for long-term diapause in this benthic species. Sexually immature adults of H. nunni undergo diapause within a pliable self-made cyst. Prior to entering diapause (which lasts 3–4 months), they produce and store large amounts of orange lipid. The lipids apparently are utilized during diapause. Although some residual lipids remain, chiefly around the gonads, after the copepods emerge from their cysts, the lipid stores are visibly reduced. Typically, the copepods mate and produce eggs within 48 h after diapause is terminated. Light level and confocal laser scanning microscopy revealed that the lipid stores are distributed throughout the body in numerous oil droplets and not as a single oil sac, as seen in many marine calanoid copepods prior to overwintering (winter diapause). Transmission electron microscopy showed lipid spheres within the gut epithelium and large droplets of lipids stored extracellularly. Confocal laser scanning microscopy of copepods in pre-diapause, during diapause (encysted), post-diapause (recently excysted), and in reproductive condition, revealed that lipid stores are reduced following diapause, but are not totally absent. Analysis of lipid classes showed that H. nunni store predominantly wax esters/sterol esters (83% of total lipids) during diapause. The predominant lipid is most likely wax esters, as sterol esters typically are found only in small amounts in copepods. Fatty acid (FA) profiles of the copepods in diapause showed 16:0 to be most abundant followed by 16:1n-7 and 18:0; other FA occurred at concentrations <10% of total FA. Three polyunsaturated fatty acids (PUFA), 20:5n-3, 18:2n-6 and 20:4n-6, were found at concentrations <2% of total FA. These PUFA are "essential fatty acids" in H. nunni, obtained through dietary sources. The lipid classes and fatty acids present in H. nunni during diapause are compared to those of other copepods, some in a state of diapause and others not. It appears that lipid class and FA profiles are indicative of genetic makeup, type of diet or amount of food consumed prior to dormancy. Some classic paradigms of lipids and their association with copepod diapause are re-evaluated.Communicated by P.W. Sammarco, Chauvin  相似文献   

9.
Zooplankton and their phytoplankton prey form the basis of the marine food web, yet historically it has been difficult to discern species-specific trophic interactions. Molecular techniques provide opportunities to obtain taxonomic data where the traditional methodologies for gut content analysis lack resolution. The large subunit gene of RubisC/O, rbcL, was utilized as a molecular marker for the identification of prey species in calanoid copepods. Clone libraries were generated from DNA extracted from seawater and whole copepods during a transect cruise on the northern Gulf of Mexico shelf. Sequence data analysis provided evidence of diatoms, nanoplankton-sized chlorophytes, and cyanobacteria in DNA extracted from whole copepods. These data demonstrate that rbcL can be a useful marker for the identification of copepod phytoplankton prey. Combining the described approach with quantitative techniques such as quantitative PCR will provide opportunities for the assessment of species-specific predator–prey interactions.  相似文献   

10.
Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.  相似文献   

11.
The pathways of cadmium (Cd) uptake and transfer within an estuarine planktonic community from the Patuxent River, Maryland, USA, were investigated using an assemblage of natural phytoplankton and the copepod Eurytemora affinis Poppe. The experiment was carried out in October 1992 in replicated 500-liter, flow-through, fiberglass tanks. Growth rate, species composition, and Cd loading affected the accumulation of Cd by the phytoplankton. Uptake of Cd by phytoplankton was proportional to the amount of Cd available in the water column. Partition coefficients (K d) for phytoplankton uptake averaged 4.4 × 104. As metal loading rates and phytoplankton species composition changed during the 12-d experiment, Cd partitioning declined. Transfer of Cd to E. affinis occurred from Cd-laden phytoplankton, with levels in the copepods being approximately the same as, or somewhat less, than in the phytoplankton. Some Cd uptake occurred in copepods exposed to dissolved Cd only; however, the uptake was considerably less than that seen from food. Thus, Cd content of higher trophic levels, such as copepods, can be affected by the degree of Cd incorporation in their food source, and by ecological factors regulating phytoplankton ingestion. Received: 13 September 1995 / Accepted: 29 October 1998  相似文献   

12.
Infection of copepods by parasitic dinoflagellates has been known for many years, but the ecological consequences of this parasitism have been largely neglected. We estimated mortality rates in the copepodParacalanus indicus Wolfenden due to parasitism by the dinoflagellateAtelodinium sp. by applying laboratory mortality rates to a field population of infected copepods in Port Phillip Bay, Australia, sampled in 1982–1985. Adult female copepods were most often infected, with an incidence of 0 to 28.5% (median 6.2%). Stage V female copepodites were less often infected, and males were never infected. The median mortality rate in females was about 7% d–1, or about one-third of total mortality, and the maximum was 41% d–1. The frequent occurrence of dinoflagellate parasitoids in some species of copepod implies an important, species-specific mechanism for the regulation of populations.  相似文献   

13.
The kinetics and efficiency of sterol production and bioconversion of phytosterols in two heterotrophic protists Oxyrrhis marina and Gyrodinium dominans were examined by feeding them two different algal species (Rhodomonas salina and Dunaliella tertiolecta) differing in sterol profiles. R. salina contains predominantly brassicasterol (≅99%) and <2% cholesterol. The major sterols in D. tertiolecta are ergosterol (45–49%), 7-dehydroporiferasterol (29–31%) and fungisterol (21–26%). O. marina fed R. salina metabolized dietary brassicasterol to produce 22-dehydrocholesterol and cholesterol. O. marina fed D. tertiolecta metabolized dietary sterols to produce cholesterol, 22-dehydrocholesterol, brassicasterol and stigmasterol. G. dominans fed either R. salina or D. tertiolecta metabolized dietary sterols to make cholesterol, brassicasterol and a series of unknown sterols. When protists were fed R. salina, which contains cholesterol, the levels of cholesterol were increased to a magnitude of nearly 5- to 30-fold at the phytoplankton-heterotrophic protist interface, equivalent to a production of 172.5 ± 16.2 and 987.7 ± 377.7 ng cholesterol per mg R. salina carbon consumed by O. marina and G. dominans, respectively. When protists were fed D. tertiolecta, which contains no cholesterol, a net production of cholesterol by the protists ranged from 123.2 ± 30.6 to 871.8 ± 130.8 ng per mg algal C consumed. Cholesterol is not only the dominant sterol, but a critical precursor for many physiologically functional biochemicals in higher animal. As intermediates, these heterotrophic protists increase the amount of cholesterol at the phytoplankton–zooplankton interface available to higher trophic levels relative to zooplankton feeding on algae directly.  相似文献   

14.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

15.
R. F. Lee 《Marine Biology》1974,26(4):313-318
A build-up of reserve lipid, predominantly wax esters, occurred during the summer in the copepod Calanus hyperboreas, collected off an Arctic ice-island. This lipid storage was correlated with a phytoplankton bloom and was followed by a progressive decrease of lipid from 2.1 mg per individual in September to 0.4 mg in June. There was a rapid decrease in lipid utilization between October and December, followed by much slower decreases until June. Lowered respiration rates or the availability of different types or quantities of food in the winter and spring are possible explantions for the slower rate of lipid use. Laboratory starvation experiments for up to 90 days correlated with results from the field. Gas-liquid chromatographic studies of the lipids showed that both the alcohols and fatty acids of the wax esters were highly variable with season and depth, whereas the phospholipid fatty acids were not affected by changes in these parameters. Only summer samples bad wax esters with a phytoplankton-like fatty acid composition, and upper water winter copepods had wax esters with little polyunsaturation. The deep-water winter copepods had a very different wax-ester composition from the upper water samples, with a predominance of hexadecanol (all other copepod samples had 20:1 and 22:11 as the principal alcohols) and a high content of polyunsaturated acids. Deep-water C. hyperboreas may differ in food habits and life history from those in the upper water community.  相似文献   

16.
 Continuous abundance estimates (510 m resolution) of the copepods Neocalanus cristatus, N. flemingeri and Metridia pacifica were obtained with an electronic particle counter along cruise tracks in the subarctic western North Pacific in spring. For all three species, the number of patches decreased exponentially with increasing patch size. Most patches (63 to 83%) were dominated by one species, and patches of the same species more closely spaced than patches of different species. The patches of M. pacifica tended to coexist with those of N. cristatus. In contrast, patches of N. flemingeri rarely co-occurred with those of other copepods. These patterns were more clearly observed in fine-scale observations with sampling intervals of <31 m. Coherence analysis of copepod species pairs showed no characteristic scale at 2 to 50 km wave lengths. At shorter wave lengths (<2 km), frequent positive correlations were observed between N. cristatus and M. pacifica. Thus, the distribution of copepods appears to be a mosaic assemblage of patches of each copepod species. These results suggest that copepods have a mechanism to form species-specific aggregations, and the aggregation and segregation processes are maintained at a scale of <2 km. Received: 24 February 1999 / Accepted: 25 April 2000  相似文献   

17.
Seasonal lipid dynamics of the copepod Pseudocalanus acuspes were studied in the Bornholm Basin (Central Baltic Sea) on a monthly basis from March 2002 until March 2003 and were interpreted in light of life cycle strategies and diet selection. The individual total lipid content of females ranged from 0.9 to 1.8 μg, with relative wax ester content reaching a significant maximum in May (44% of total lipids) and minimum (17% of total lipids) in April and November. Significant changes in size, lipid content, lipid classes and fatty acid composition of structural as well as storage lipids suggested five characteristic seasonal phases that were induced by different feeding histories and environmental conditions. Storage lipids were characterized by 18:1(n−9) as major component, which ranged between 44% of total fatty acids in June and 23% in February. The strong coherence between 18:1(n−9) in the seston lipids and the occurrence of ciliates emphasized the importance of ciliates in the diet of P. acuspes. As indicated by changes in the amounts of fatty acid markers, other food sources varied over the year, suggesting an opportunistic feeding behavior. The spring period was characterized by an increase in typical diatom and dinoflagellate markers, whereas other sources, potentially cyanobacteria, became more important during summer. The life cycle strategy is discussed with respect to extant adaptations to high latitudinal habitats.  相似文献   

18.
The transfer of chlorinated hydrocarbons (CHC) in a laboratory simulation of a three trophic level marine food chain was studied. The food chain consisted of the algal flagellate Dunaliella sp., the rotifer Brachionus plicatilis, and the larva of the Northern anchovy Engraulis mordax. CHC were introduced into the seawater at concentrations representative of near-shore conditions off southern California without the use of dispersing agents. Each trophic level appeared to be in a steady-state at the time of first sampling, 5 days after inoculation. Apparent partition coefficients were calculated for each trophic level. The CHC contamination in the diet of the rotifers and anchovy larvae was also calculated. Unfed anchovy larvae accumulated the same amount of CHC as fed larvae and the final concentration appeared to be dependent on the CHC concentration in the seawater. The data in this report suggest that CHC accumulation is not a food-chain phenomenon but rather the result of direct partitioning of the compounds between the seawater and the test organisms.  相似文献   

19.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

20.
Phytoplankton xanthophylls in the gut contents of the copepods Calanus pacificus, Corycaeus anglicus, and Paracalanus parvus, collected from 5 stations off San Onofre, California, in June 1982, were measured by reverse phase, high-performance liquid chromatography (HPLC). The dinoflagellate pigment, peridinin, was usually the most abundant xanthophyll in the guts of all three species of copepods. Evidently, feeding was principally on dinoflagellates (which dominated the phytoplankton biomass). The level of feeding activity, rather than the class of phytoplankton ingested, seemed to differentiate the behaviors of the copepods. Xanthophyll content per unit copepod wet weight was higher in Corycaeus anglicus and Paracalanus parvus than in Calanus pacificus. Chlorophyll a fluorescence of the copepod gut contents was measured in conjunction with the analysis of gut xanthophylls. The xanthophyll content of the gut varied directly with the concentration of chlorophyll a in the gut. Xanthophyll content was not related to the concentration of pheopigments in the gut. Apparently, the xanthophylls that were detected were due to the presence of recently ingested phytoplankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号