首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Today most rivers are not freely flowing but are highly regulated to meet both human and wildlife needs. Several models allow the determination of instream flows that are needed to meet wildlife demands. However, these models are based on assumptions that limit their applicability to certain types of rivers. While these limitations do not preclude the use of the models on other types of rivers, like the Platte River in Nebraska, their limitations should be considered and accommodated by those making instream flow planning and management decisions. Other factors affecting channel morphology and its associated wildlife habitat, such as threshold values and vegetation are not adequately considered by current concepts. If rivers are to be managed to provide wildlife habitat, these factors will have to be addressed.  相似文献   

2.
ABSTRACT: A critical examination of the techniques used to assess and specify environmental instream flow requirements is provided. The strengths and weaknesses of individual techniques are evaluated on both an absolute and a comparative basis. Particular attention is given to the problem of specifying environmental flow requirements in Australia where the hydrology has distinctly different characteristics to those in countries where most of the models for prediction of instream flow requirements were developed. Broad recommendations as to the suitability and use of the different techniques for different conditions are provided.  相似文献   

3.
ABSTRACT: As coal resources are developed in the Northern Great Plains regions, new reservoirs are being considered to meet expanding water demands. The amount of water available for industrial diversion, however, could be limited by regulations that require minimum flow levels to be maintained downstream of the reservoir sites. Computer simulations of potential reservoirs were used to determine to what extent, if any, instream flow requirements might limit the ability of reservoirs to deliver industrial water supplies. Data on instream flow requirements, potential reservoir sites, and historic runoff were input for the simulation of the Powder River Region of Montana and Wyoming. Results of the simulations compared the maximum amount of water available for industrial diversion with and without requiring instream flow criteria.  相似文献   

4.
ABSTRACT: The lower 4 miles of the Red River, a tributary of the Rio Grande in northern New Mexico, was designated as one of the “instant” components of the National Wild and Scenic River System in 1968. The Bureau of Land Management (BLM), as the managing agency of the wild and scenic river, was a participant in a general water rights adjudication of the Red River stream system. The BLM sought a federal reserved water right and asserted a claim to the instream flows necessary to protect and maintain the values of the river. Instream flows are not recognized under New Mexico water law. Instream flow requirements were determined by several methods to quantify the claims made by the United States for a federal reserved water right under the Wild and Scenic Rivers Act. The scenic (aesthetic), recreational, and fish and wildlife values are the purposes for which instream flow requirements were claimed. Since water quality is related to these values, instream flows for waste transport and protection of water quality were also included in the claim. The U.S. Fish and Wildlife Service's Instream Flow Incremental Methodology was used to quantify the relationship between various flow regimes and fish habitat. Experience in this litigation indicates the importance of using state-of-the-art methodologies in quantifying instream flow claims. The incremental methodology held up well under technical and legal scrutiny and is an example of the latest methodology that was applied successfully in an adjudication. On February 23, 1984, the parties involved in the adjudication entered a precedential stipulation recognizing a federal reserved right to instream flows for the Red River component of the National Wild and Scenic River System.  相似文献   

5.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   

6.
ABSTRACT: A mathematical model of agricultural water use and a hydrological and economic simulation model were linked to quantify the economic and hydrological impact of deficit irrigation, increased water application efficiency, and farm storage dams when maintaining an IFR (instream flow requirement) under stochastic water supply conditions. The main finding was that a water conservation policy aimed at reducing the amount of water withdrawn from the river could bring more pressure to bear on stream flow. Water can only be saved if consumptive use is reduced. Increased water application efficiency is detrimental to other users as a result of reduced return flow. The economic cost of maintaining a specific IFR increases with the use of all three strategies as the probability of maintaining the IFR increases. Because of the control that can be exercised over the supply of water, a farm storage dam is the best strategy for minimizing the costs for irrigators. The interaction between water legislation, water policy administration, technology, hydrology, and human value systems necessitates an integrated approach to facilitate water management at catchment level and to formulate policies that will be in the interest of society.  相似文献   

7.
Flushing flows are re1eses from dams designed to remove fine sediment from downstream spawning habitat. We evaluated flushing flows on reaches proposed for hydroelectric diversions on seven streams in the eastern Sierra Nevada, California, with wild populations of brown trout (Salmo trutta). The stream reaches are steep (average map slopes range from 7 to 17 percent), are dominated by boulder cascades, and afford few opportunities for gravel deposition. Methods for estimating flushing flows from flow records, developed from studies in other localities, produced widely differing results when applied to the study streams, probably reflecting differences in the hydrologic and geomorphic characteristics of the streams on which the methods were developed. Tracer gravel experiments demonstrated that all sampled gravels were washed out by the flows of 1986, a wet year. Size analyses of gravel samples and hydraulic data from field surveys were used in tractive-force calculations in an attempt to specify the flow required to flush the gravels. However, these calculations produced some unrealistic results because the flows were nonuniform in the study reaches. This suggests that the tractive-force approach may not be generally applicable to small, steep streams where nonuniform flow conditions prevail.  相似文献   

8.
Velocity and depth preference curves for juvenile and adult red shiners (Notropis lutrensis) were developed for each season of the year. The incremental methodology, developed by the U.S. Fish and Wildlife Service for quantifying the amount of physical habitat available for fish, was applied as a basis for recommending minimum stream flows for life stages of red shiners and channel catfish (Ictalurus punctatus) in the Washita River below Foss Reservoir. The minimum stream flow required to support populations of red shiners and channel catfish was estimated to be 0.60 m3/s during all months except April and May, during which flushing flows of 3.0 m3/s were recommended. Under drought conditions a contingency flow of 0.18 m3/s was recommended for August through March, a flushing flow of 2.4 m3/s for April and May, and a flow of 0.30 m3/s for channel catfish spawning in June and July. Standing crop of adult red shiners per weighted usable area averaged 2.73 g/m2 (27 kg/ha) for two sites on the Washita River. A positive relation between standing crop and weighted usable area was suggested. Use of the incremental methodology on the study reach below Foss Reservoir required 96 person-hours of labor, excluding training, travel, and developing preference curves, and a total cost of $1,762, of which $1,200 was for the purchase of equipment.  相似文献   

9.
ABSTRACT: This paper presents a quantitative assessment framework for determining the instream flow under multiobjective water allocation criteria. The Range of Variability Approach (RVA) is employed to evaluate the hydrologic alterations caused by flow diversions, and the resulting degrees of alteration for the 32 Indicators of Hydrologic Alteration (IHAs) are integrated as an overall degree of hydrologic alteration. By including this index in the objective function, it is possible to optimize the water allocation scheme using compromise programming to minimize the hydrologic alteration and water supply shortages. The proposed methodology is applied to a case study of the Kaoping diversion weir in Taiwan. The results indicate that the current release of 9.5 m3/s as a minimum instream flow does not effectively mitigate the highly altered hydrologic regime. Increasing the instream flow would reduce the overall degree of hydrologic alteration; however, this is achieved at the cost of increasing the water supply shortages. The effects on the optimal instream flow of the weighting factors assigned to water supplies and natural flow variations are also investigated. With equal weighting assigned to the multiple objectives, the optimal instream flow of 26 m3/s leads to a less severely altered hydrologic regime, especially for those low‐flow characteristics, thereby providing a better protection of the riverine environment.  相似文献   

10.
ABSTRACT: The use of reservoirs and land treatments to manage streamflow for the maintenance or enhancement of instream flow values is a valid concept. Historically, large reservoirs have been used for flood control and water-supply regulation. Smaller structures have enjoyed widespread use for soil and water conservation in headwater areas. Where reservoir releases can be controlled, it is technically feasible to regulate flows for the enhancement of instream values. However, institutional and political obstacles may preclude the operation of some reservoirs for this purpose. Retention and detention structures and land treatments, implemented for soil and water conservation purposes, have often had favorable effects on the streamflow hydrograph. Decreases in peak flows and increases in low flows have been documented. Design concepts for runoff-control structures are discussed in relation to instream flow management objectives. Hydro-logic simulation is offered as a potential tool for project design and feasibility analysis.  相似文献   

11.
ABSTRACT: The resource management problem for the Middle Platte ecosystem is the insufficient water available to meet both instream ecological demands and out‐of‐stream economic needs. This problem of multiple interest groups competing for a limited resource is compounded by sharp disagreement in the scientific community over endangered species' needs for instream flows. In this study, game theory was used to address one dimension of this resource management problem. A sequential auction with repeated bidding was used to determine how much instream flow water each of three states — Colorado, Nebraska, and Wyoming — will provide and at what price. The results suggest that the use of auction mechanisms can improve the prospects for reaching a multi‐state agreement on who will supply instream flow water, if the auction is structured to discourage misrepresentation of costs and if political compensation is allowed.  相似文献   

12.
ABSTRACT: An envelope of steady-state surface runoff response for a hilislope is established in terms of the probability distribution and spatial arrangement of individual point infiltration capacities and the rainfall intensity. Minimum overland flow is shown to occur when point infiltration capacities are ordered with the highest at the slope bottom, while maximum overland flow occurs when the highest point capacities are at the top of the slope. Equations for envelope curves are developed for both continuous distributions and discretely sampled data; examples for each case are given. Use of the analysis as a rainfall-runoff model is also discussed.  相似文献   

13.
ABSTRACT: A streamflow duration curve illustrates the relationship between the frequency and magnitude of streamflow. Flow duration curves have a long history in the field of water-resource engineering and have been used to solve problems in water-quality management, hydropower, instream flow methodologies, water-use planning, flood control, and river and reservoir sedimentation, and for scientific comparisons of streamflow characteristics across watersheds. This paper reviews traditional applications and provides extensions to some new applications, including water allocation, wasteload allocation, river and wetland inundation mapping, and the economic selection of a water-resource project.  相似文献   

14.
ABSTRACT: The U.S. Geological Survey is now (1975) conducting an intensive river-quality assessment of the Willamette River basin, Oregon. The objectives are to (1) define a practical framework for conducting comprehensive river-quality assessments, (2) develop and document methods for evaluating basin-development alternatives in terms of potential impacts on river quality, (3) determine the kinds and amounts of data required to adequately assess various types of river-quality problems, and (4) apply the framework, data, and methods to assess the existing or potential river-quality problems of the Willamette River basin. This paper covers objectives 2, 3, and 4 by examining the rationales behind the selection and application of methods and the design of data programs for assessing specific river-quality problems. The rationales are those developed for assessing (1) the effect of population and industrial growth and resulting waste discharges on river-dissolved oxygen, (2) the potentially harmful effects on land and river quality of accelerated erosion resulting from intensive land-use development, and (3) the potential for nuisance algal growth. The goal of the assessment program and, thus, the context of the rationales is to provide technically sound information that is appropriate and adequate for resource planning and management.  相似文献   

15.
ABSTRACT: A methodology for assessing reservoir management was applied to the historical conflict between winter fish and wildilife flows below Island Park Reservoir on Henrys Fork of the Snake River and the fulfillment of storage water rights. The methodology consists of (1) identifying impacts of flow regulation, (2) quantifying relationships among variables affecting physical reservoir fill, and (3) assessing effects of these discharges on the fulfillment of water rights in the context of a larger system of interrelated reservoirs. Winter (storage season) flows are critical to management of fish and wildlife populations below Island Park Dam, but flow regulation has resulted in decreased winter discharge. Allowable winter flows are a function of inflow, length of storage season, reservoir content at the start of storage season, and potential for downstream capture of excess storage season water discharged at Island Park. Modeling results indicate that winter flows in the range of those recommended for fish and wildlife management are attainable during average years but not during years when initial reservoir content is low. The methodology was successful in quantifying information useful to decision makers in a variety of agencies and disciplines and could be applied to solve water management problems on other regulated river systems.  相似文献   

16.
ABSTRACT: Four methods for estimating the 7-day, 10-year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distributions (Log-Pearson III and Weibull) had lower mean square errors than did the Box-Cox transformation method or the Log-Boughton method which is based on a fit of plotting positions.  相似文献   

17.
ABSTRACT: Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12° Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.  相似文献   

18.
ABSTRACT: A variety of methods have been used to learn about the relation between streamfiow and recreation quality. Regardless of method, nearly all studies found a similar nonlinear relation of recreation to flow, with quality increasing with flow to a point, and then decreasing for further increases in flow. Points of minimum, optimum, and maximum flow differ across rivers and activities. Knowledge of the effects of streamflow on recreation, for the variety of relevant activities and skill levels, is an important ingredient in the determination of wise streamflow policies.  相似文献   

19.
ABSTRACT: It is important to extract and assess low flow recession characteristics for water resources planning in the upper reaches of streams. However, it is very difficult to express synthetically the low flow recession characteristics for a stream flow. In this paper, first a new method of constructing the master recession curve based on the exponential expression is proposed and applied with the restriction that there are no regulation or diversion structures in the upper reaches above the measurement station. Daily precipitation and stream flow were used for the analysis. Second, analysis for a recession constant was conducted and the relationship between the recession constant and low flow and/or geology was qualitatively examined. In conclusion, the application of the proposed method indicated that it is objective and useful for constructing the master recession curve. It became apparent that the recession constant of a master recession curve may be defined as the total index of low flow characteristics. In addition, it was found that baseflow value increases in the order of Paleozoic, Mesozoic, Tertiary, and Quaternary.  相似文献   

20.
ABSTRACT: This paper presents the results of a statistical analysis performed for the watershed and stream corridor in the South Fork of the Clearwater River (SFCR) basin, in north central Idaho. The analysis was performed for 61 six‐field hydrological unit codes (HUCs) of the SFCR basin using an extensive record (up to 100 years) for 50 watershed and in‐stream parameters, including hydrologic, flow, fish, anthropogenic, and natural activity data. The objective of this research was twofold: first, the development of quantitative relations that describe the Index of Fish Density (IFD) of particular fish species as a function of watershed and instream parameters; and second, to provide a robust confirmation for the effects of some of these parameters, previously recorded by the fisheries profession, by using well established statistical techniques. The uniqueness of this work is the compilation and statistical analysis of large data sets to quantitatively describe the impacts of watershed and instream parameters on the IFD of all salmonids and specific fish species. Factor analysis was employed to regroup parameters that are highly correlated to each other into a set of single factors and to relate the IFD to these factors. Using factor extraction, 12 factors were developed from the 50 watershed and instream parameters. Multiple regression diagnostic tests indicated that only 7 of the 12 factors are strong predictors offish indicators. The strongest predictors are longitude, latitude, elevation, watershed gradient, and water temperature. The analysis indicated that the present model has reasonable predictive power, considering the uncertainty involved in estimating the interdependence of IFD with watershed parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号