首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
水泥窑共处置废农药生命周期评价研究   总被引:1,自引:3,他引:1       下载免费PDF全文
国内在水泥窑共处置废农药方面的研究处于起步阶段. 通过开展试烧试验,以生命周期评价方法(LCA)为研究手段, 对水泥窑共处置废农药技术的环境影响进行评价,并与危险废物的其他处置方法做比较,以处置1 kg危险废物为功能单位. 结果表明,常规危险废物焚烧的综合环境负荷指数为1.428 4×10-12 a-1, 而水泥窑中共处置废农药的综合环境负荷指数为0.183 9×10-12 a-1,远低于常规危险废物焚烧.   相似文献   

2.
以废弃农药为研究对象,应用生命周期评价法从人类健康(HH)、生态系统质量(EQ)和资源(R)3个角度对水泥窑共处置和焚烧炉处置的环境影响做出定性和定量评估.结果表明,废弃农药在水泥窑中共处置更具环境合理性.在水泥窑共处置和焚烧炉处置中,功能单位(1t)废弃农药总环境负荷(也称为环境影响潜值)分别为-27.5和0.379Pt,前者的环境负荷比后者减少了7360%,人类健康(HH)、生态系统质量(EQ)和资源(R)等各指标分别减少372%、5840%、-40.0%.废弃农药水泥窑共处置在原/燃料的获取阶段可避免57.4%的环境负荷,是降低水泥窑共处置环境影响的关键环节.焚烧和电力生产阶段的污染排放对焚烧炉处置中各指标都有很高的贡献率.二英、苯、重金属是水泥窑共处置废弃农药的主要影响因子;NOx和粉尘对焚烧系统的影响较大.  相似文献   

3.
以低品质包装废物为典型固体废物开展水泥窑共处置试烧试验. 以生命周期评价(LCA)方法为研究手段,对水泥窑共处置技术的环境影响进行评价,并且与常规水泥熟料生产过程进行比较. 通过试验和资料调研,获得所有生命周期阶段的能量和物质输入、输出以及环境外排数据,利用SimaPro7.1软件进行处理,得出相应的环境影响潜值. 结果表明:①在水泥熟料生产的全生命周期过程中,对环境影响所占比重最大的是生产阶段,共处置低品质包装废物可以使环境影响潜值降低10.65%(从263 Pt降至235 Pt),主要表现在无机物对人体的损害和酸化/富营养化方面. ②从全生命周期来看,共处置低品质包装废物使环境影响潜值降低了8.68%(从334 Pt降至305 Pt),主要表现在无机物对人体的损害和酸化/富营养化方面的降低,二者的环境影响潜值分别降低了11.00%和15.70%.   相似文献   

4.
固体废物水泥窑共处置技术的现状及发展   总被引:2,自引:0,他引:2  
固体废物水泥窑共处置技术减小了固体废物引起的环境负荷,使废物资源化的同时,为水泥工业提供了能源和资源,在国内外得到了一致认可与广泛应用。在分析水泥窑共处置技术的特点与优点的基础上,提出了水泥窑共处置技术必须遵循的要求与原则,以保证水泥产品的质量,减小环境负荷。发达国家的水泥窑共处置技术已经得到了长足发展,并且在废物的利用处置中占据着重要位置;与发达国家相比,中国的水泥窑共处置技术尚处于起步阶段,今后将在以下几个方面得到发展:建立相关的法律法规、开发利用新技术、扩大利废范围。  相似文献   

5.
水泥窑共处置废白土的环境效益分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以废白土为研究对象,应用生命周期评价法(LCA)对水泥窑共处置和焚烧炉处置系统3个类别的环境影响[人类健康(HH)、生态系统质量(EQ)和资源(R)]进行研究和对比分析.结果表明,水泥窑共处置废白土有利于环境的可持续发展,焚烧炉处置对环境的影响较大.水泥窑共处置和焚烧炉处置功能单位废白土的总环境负荷分别为-1.03,0.273Pt,前者的环境负荷比后者减少了477%,相应各指标的减少率为:HH 413%, EQ 479%, R 36.9%. EQ在2种处置方式的LCA中均为最敏感的影响指标.水泥窑系统中,避免了贡献率占97%以上的矿山开采阶段的环境影响,是降低整个系统环境影响的关键环节;焚烧炉系统中,电力消耗是造成环境破坏的重要阶段,对各影响指标都有很高的贡献率.二 、苯、重金属的排放是水泥窑共处置废白土的主要影响因子;粉尘和重金属排放对焚烧处置系统的影响较大.  相似文献   

6.
水泥窑协同处置工业废弃物的生命周期评价   总被引:1,自引:0,他引:1  
侯星宇  张芸  戚昱  蒋慧  张琳  曲殿利 《环境科学学报》2015,35(12):4112-4119
以废白土、废催化剂和污染土壤等工业废弃物为研究对象,运用生命周期评价(LCA)方法,对水泥窑协同处置废弃物的环境影响进行评价.通过建立生产过程输入、输出清单,从全球变暖潜值、资源消耗潜值、人体毒性潜值等方面,基于Gabi5.0软件进行建模与计算,对水泥窑常规生产工艺与协同处置工业废弃物工艺产生的环境影响进行比较.结果表明:功能单位(1 t)水泥的生产过程中,常规生产工艺和协同处置工艺的环境影响潜值分别为5.78×10~(-11)和5.61×10~(-11),协同处置工艺使得全生命周期环境影响潜值降低了2.94%;水泥生产过程最主要的环境影响是全球变暖和人体毒性,其中,协同处置工艺下这两种环境影响分别降低了0.80%和1.80%,资源消耗相比常规生产降低了11.1%;从全生命周期看,水泥生产中熟料煅烧阶段对环境的影响最大,协同处置工艺下熟料煅烧阶段的环境影响相比常规生产降低了8.0%.协同处置工艺相比常规生产工艺有更好的环境效益.  相似文献   

7.
水泥窑共处置应用的国际经验   总被引:4,自引:0,他引:4  
水泥窑共处置在发达国家已有30多年的应用经验,环境效益、经济效益和社会效益明显。在我国,该技术的应用和管理还处于起步阶段。借鉴国际先进经验,推进该技术示范和应用,对于加强我国固废、危废管理及节能减排具有重要意义。  相似文献   

8.
水泥窑共处置产品中重金属的形态   总被引:2,自引:1,他引:2  
通过模拟煅烧掺入重金属化学试剂的水泥生料,制备水泥熟料,进而制取水泥净浆. 采用修正的Tessier连续提取法,分别研究了水泥熟料和水泥净浆中各重金属的形态. 结果表明:水泥熟料中Ni,As,Cd和Pb几乎不存在可交换态. 其中,Cr和Cd主要以酸性醋酸钠溶液提取态存在,分别为71.0%和95.1%;Ni主要分布在酸性盐酸羟胺溶液提取态(65.6%)中,在残渣态中的分布也较多(20.3%);Pb主要分布在硫化物结合态(72.7%)中,与硫形成某种化合物固溶于水泥矿物相中;As的硫化物结合态和酸性醋酸钠溶液提取态质量分数较高,分别为35.1%和51.8%. 水泥净浆中各重金属的形态分布与水泥熟料基本一致,表明重金属的主要化学形态分布受水化作用影响不大.   相似文献   

9.
摘要:从已有的工程实例,本文总结了污染土壤水泥窑共处置的可行性,水泥窑共处置污染土壤的类型,水泥窑共处置的投料方案,水泥窑共处置对水泥窑达标排放的影响以及污染土壤水泥窑共处置的注意事项。  相似文献   

10.
水泥窑共处置危险废物过程中重金属的分配   总被引:2,自引:0,他引:2       下载免费PDF全文
以废弃农药、污染土壤和废白土为研究对象,在3个新型干法水泥厂开展了水泥窑共处置的工程试验,分析了共处置对13种重金属在不同相分配情况的影响.结果表明,重金属的分配不受危险废物投加的影响,不挥发和半挥发重金属在烟气中的分配率远低于在熟料中的分配率;尾气中Hg及部分重金属的排放浓度很小甚至低于检测限;As在烟气中分配率较高,与该金属在窑内的存在形态以及As的某些化合物具有挥发性等因素有关;为控制尾气中重金属含量满足相关标准的排放限值,根据本研究和相关研究数据预测了重金属允许的最大投加量和废物中允许的重金属最大含量.  相似文献   

11.
废物水泥窑共处置产品中重金属释放潜能表征研究   总被引:6,自引:5,他引:1  
通过模拟煅烧试验制取水泥熟料,并采用国标GB/T17671—1999制取混凝土样品.选用酸解法,EA NEN7371和pH静态试验分别测定了混凝土中重金属的全量、有效量和在不同pH系列中的释放量,研究了废物水泥窑共处置产品环境安全性评价中重金属的释放潜能指标.结果表明,全量和有效量存在较大差异,但二者间的相关性因元素种类不同而有较大差别,Ni,Cd的全量和有效量间相关性较好,R2分别为0.989和0.994,而Cr,As和Pb基本不存在线性相关关系;pH静态试验中最大释放量与有效量较为接近,而与全量有较大差异;有效量是废物水泥窑共处置产品使用过程中表征其重金属释放潜能的较优指标.   相似文献   

12.
为了研究水泥窑共处置过程中水泥生料对Pb、Cd的吸附/冷凝特性,采用氮吸附仪和SEM(场发射扫描电镜)对水泥生料的基本物理性质(比表面积、孔径和微观表面积)进行研究;同时,利用小型试验装置对重金属Pb、Cd的氧化物(PbO、CdO)展开了吸附/冷凝研究. 结果表明:水泥生料的比表面积(2.49 m2/g)较小,微观表面结构致密无孔,因此,在水泥窑共处置过程中水泥生料对重金属的吸附/冷凝作用以冷凝为主. 进入控温立式炉的重金属可分为三部分:①冷凝在管壁上,其中Pb、Cd分别占各自入炉总量的67%~72%、58%~65%;②吸附/冷凝在水泥生料上,其中Pb、Cd分别占各自入炉总量的13%~17%、16%~21%;③随烟气释放到空气中,其中Pb、Cd分别占各自入炉总量的10%~18%、14%~26%. 水泥生料对Pb、Cd的吸附/冷凝特性均可用双常数方程拟合,线性拟合的相关系数均在0.95以上. 动力学方程拟合得到水泥生料对Pb、Cd的吸附/冷凝活化能,二者分别为5.827、6.050 kJ/mol,由此可预测水泥生料对Pb和Cd的吸附/冷凝量.   相似文献   

13.
水泥回转窑处理固体废弃物的环境效应分析   总被引:1,自引:0,他引:1  
我国水泥回转窑量大面广,利用水泥回转窑处理固体废弃物是未来的发展方向之一。在对可入窑焚烧固体废弃物进行分类的基础上,比较了水泥回转窑与常规焚烧炉的焚烧过程和焚烧条件,分析了水泥回转窑处理固体废弃物的环境友好性,以及焚烧过程对大气环境、水泥产品重金属浸出对水环境的影响。  相似文献   

14.
水泥窑共处置含Cr废物中Cr在不同温度下的形态转化   总被引:1,自引:0,他引:1  
将Na2CrO4加入生料中模拟含Cr入窑物料〔掺加比例为0.048%(以w计)〕,以探索水泥窑共处置含Cr废物过程中Cr的形态转化. 将含Cr入窑物料在不同温度条件下进行煅烧,消解煅烧样品以分析Cr在不同温度下的残留率并利用XANES(X射线吸收近边结构光谱)技术分析煅烧样品中Cr的存在形态. 结果表明:对应900、1000、1100、1200、1300和1450℃煅烧条件下,熟料中Cr的残留率分别为88.2%、70.7%、73.7%、67.2%、69.5%和67.8%. 由于窑尾温度为1050~1100℃,并且Cr的残留率在1100℃较高,因此从窑尾添加含Cr废物可以减少水泥窑共处置含Cr废物过程中的Cr逸放. 在900~1450℃煅烧条件下,所有样品中的Cr主要以CrO3、Cr2O3和CaCrO4的形式存在. 1000℃煅烧温度下存在K2Cr2O7,但不存在K2CrO4;900℃和1100~1300℃煅烧温度下有K2CrO4存在,但不存在K2Cr2O7. 1100~1450℃煅烧温度下,Cr元素进入到水泥熟料的主要矿物中,并主要以CrO3和Cr2O3的形式与其他物质结合生成了较为复杂的Ca4A16O12CrO4、Ca6Al4Cr2O15等.   相似文献   

15.
废物水泥窑共处置产品中Ni释放的pH影响   总被引:1,自引:1,他引:0  
通过模拟煅烧实验制取水泥熟料,并制取混凝土样品。参照NEN7375浸出方法,设定5种不同pH值的浸取液,研究了pH值对混凝土块中重金属Ni释放的影响.结果表明,浸取液的pH=2.00、3.50、5.00、7.35和10.0时,混凝土中Ni的累积释放量分别为1.64、0.167、0.038、0.019和0.025mg/kg;酸性范围内,累积释放量随着pH值的增大而减小,并在弱碱性条件下达到最小值,碱性范围内,随pH值的增大而呈增加的趋势。pH值对Ni的释放过程有影响,pH=3.50和7.35的浸取液中,混凝土中Ni的释放机理为扩散控制,释放曲线与斜率为0.5的直线拟合较佳,且不同区间浸出量曲线的斜率均在0.35~0.65范围内;pH=2.00和5.00的溶液中,Ni的释放在前、中期为扩散控制,后期发生了耗竭作用;pH为10.0条件下,Ni的释放在前期发生了延滞现象,中期为扩散控制,而后期发生了耗竭。  相似文献   

16.
对水泥窑协同处置DDT废物技术进行了工厂规模的试验研究。通过控制DDT废物投加速率,考察了水泥窑协同处置DDT废物的焚毁去除率(DRE)和烟气排放状况,及其对水泥产品质量的影响。结果表明,在DDT废物投加速率控制在1.0 t/h以下时,DDT的焚毁去除率达99.999 996 2%以上,烟气中二噁英浓度的平均排放值远低于标准限值(0.1 ng I-TEQ/Nm3)要求。此外,水泥窑协同处置DDT废物对烟气排放和熟料产品质量未造成不利影响。  相似文献   

17.
废物水泥窑共处置产品中重金属释放量研究   总被引:2,自引:3,他引:2  
杨玉飞  黄启飞  张霞  杨昱  王琪 《环境科学》2009,30(5):1539-1544
通过模拟煅烧实验制取水泥熟料,并采用国标GB/T 17671-1999制取混凝土样品.选用EA NEN7371和EA NEN7375浸出方法,利用基于菲克扩散第二定律的一维扩散模型对废物水泥窑共处置产品(混凝土)中重金属长期累积释放量进行了研究.结果表明,混凝土中重金属的最大释放量低于总量;各种重金属在混凝土中的扩散系数不同,且Cr>As>Ni>Cd; Cr、As、Ni和Cd 30a的累积释放量分别为4.43、 0.46、 1.50和0.02 mg/kg,释放率(累积释放量/最大释放量)分别为27.0%、 18.0%、 3.0%和0.2%;扩散系数是影响重金属累积释放量的重要因素,且两者表现出较好的相关性;Cr和As的扩散系数较大(分别为1.15E-15 m2/s和6.42E-16 m2/s),应重点控制其进入水泥窑处置过程的总量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号