首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

2.
In this paper a process for the treatment of landfill leachate involving evaporation and reverse osmosis was proposed. Experimental tests were performed on an industrial landfill leachate. The leachate was subjected to evaporation so as to obtain a distillate containing a small amount of organic material and a substantial amount of inorganic substances (consisting primarily of metals and ammonium salts). The distillate of the evaporation treatment was then subjected to reverse osmosis. The reverie osmosis tests were performed using two different membranes: the AD membrane (thin two-ply film of polyamide) and the SC membrane (thin three-ply film of polyamide). Tests carried out at different values of pH showed a reduction of organic content of about 88% when AD membranes were used and about 80% with SC membranes independently of pH. As regards ammonium, comparable reductions of over 97% were registered for both types of membrane in the optimal conditions of pH = 6.4 (97.1% for AD membranes and 97.7% for SC).  相似文献   

3.
Management of landfill emissions, i.e., landfill gas (LFG) and landfill leachate, is an important and resource-intensive task. A long-term demonstration pilot, consisting of landfill simulation reactors (LSRs), was used to study the impact of temperature and the applied liquid/solid ratio (L/S ratio) on landfill emissions, characteristics, and trends. This pilot has already run for more than 1000 days since the end of 2004 and will continue to run for some time. The degradation of waste at different temperatures has impacts on the overall degradation degree and on the length of post-closure care required. Higher temperatures accelerated the degradation, but also resulted in higher leachate chemical oxygen demand (COD) and ammonia concentrations, which prolong the aftercare period. Meanwhile, at a given stabilization degree [e.g., 70 l gas/kg waste (dry)], the total leached nitrogen under psychrophilic conditions was 3.5 times that under mesophilic/thermophilic conditions, which resulted in a higher required effort for leachate treatment. The impact of L/S ratio or simulated annual L/S rates was also evaluated. The results show the significance of efficiently obtaining the targeted L/S ratio in order to achieve low landfill emission potential.  相似文献   

4.
Mathematical model analysis of Fenton oxidation of landfill leachate   总被引:2,自引:0,他引:2  
The treatment of concentrated landfill leachate rejected from reverse osmosis (RO) with Fenton process was studied, and the system model was developed through the examination of reaction kinetics. The leachate is typically non-biodegradable with low BOD5/COD ratio 0.01. The oxidation reactions of Fenton process was found to be a two-stage process, where a fast initial reaction (H2O2/Fe2+) was followed by a much slower one (H2O2/Fe3+). A simple and more accurate mathematics model based on COD and TOC removals has been derived successfully to describe the two-stage reaction kinetics. The two corresponding parameters involved in this model have been identified as the initial reaction rate and the maximum oxidation removal efficiency, respectively. It was found to be very useful for evaluating the performance of Fenton system and/or for process design using the two parameters under different experimental conditions.  相似文献   

5.
In today’s context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON–ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.  相似文献   

6.
The key aspects of landfill operation that remain unresolved are the extended timescale and uncertain funding of the post-closure period. This paper reviews the topic and proposes an economic instrument to resolve the unsustainable nature of the current situation. Unsustainability arises from the sluggish degradation of organic material and also the slow flushing of potential pollutants that is exacerbated by low-permeability capping. A landfill tax or aftercare provision rebate is proposed as an economic instrument to encourage operators to actively advance the stabilization of landfilled waste. The rebate could be accommodated within existing regulatory and tax regimes and would be paid for: (i) every tonne of nitrogen (or other agreed leachate marker) whose removal is advanced via the accelerated production and extraction of leachate; (ii) every tonne of non-commercially viable carbon removed via landfill gas collection and treatment. The rebates would be set at a level that would make it financially attractive to operators and would encourage measures such as leachate recirculation, in situ aeration, and enhanced flushing. Illustrative calculations suggest that a maximum rebate of up to ~€50/tonne MSW would provide an adequate incentive.  相似文献   

7.
A leachate purification system, equipped with the thin open channel spiral wound modules, is studied in this paper. In Phase I, effluent from an activated sludge process followed by the flocculation/sedimentation process was fed into the landfill leachate treatment unit. After 2 wk of operation, the permeate flux dropped dramatically, from an average value of 6.5l/m(2)/h to 4.23 l/m(2)/h. The significant decline of membrane flux was likely caused by membrane fouling. In Phase II, raw leachate was fed directly into the reverse osmosis leachate treatment system. An average flux of 7.8l/m(2)/h was maintained at an initial trans-membrane pressure difference of 20 bar, which increased to 40 bar before membrane chemical cleaning. An average recovery rate of 70% was achieved. Throughout the observation in Phase II, an average reduction rate of 98.2% for the dissolved solids was obtained. The reduction rate of COD was greater than 99.5% with a constant level of the permeate COD. Chloride was eliminated by more than 99%, while over 98% of NH(4)-N was reduced. A negligible permeate flux drop was observed after cleaning the membrane effectively. The study shows that direct reverse osmosis membrane filtration with thin open channel spiral wound modules is able to achieve satisfactory results in terms of water quality, process stability and membrane flux. The obtained quality of the permeate quality in this study met the German standards for leachate discharge. At the end of each filtration cycle, the membrane was maintained through alkaline chemical cleaning in order to remove any irreversible membrane fouling. After the maintenance procedure, the membrane flux was found to recover to the initial value.  相似文献   

8.
This article is intended to provide background information on leachate management in closed landfill sites based on a comparison of two landfill sites and the identification of leachate characteristics depending on the final cover and the season. Site S is older and has no final cover, while site J is younger and has final capping. The results of leachate analysis from the two landfills show that the biological oxygen demand to chemical oxygen demand ratio decreases below 0.1 to the range 0.05–0.07 for site S, whereas the ratio at site J was in the range 0.08–0.55. The inorganic nitrogen concentration was in the range 169.9–386.1 mg/l with an average of 265.2 mg/l at site S. Ammonia nitrogen accounted for 98.9% of the total nitrogen. The absence of a final cover on closed landfill sites may contribute to the stabilization of such landfills due to flushing. The nitrogen content at landfill S dropped in the summer, whereas it decreased in the fall at site J. A higher fluctuation in the pollutant levels of organic matters and nitrogen at the younger landfill site was observed, compared to the older site, even though the younger site had final capping. Therefore, intensive leachate management should be arranged at the early stages after closing for proper treatment. Specifically, nitrogen management of leachate is a critical factor in treatment operations.  相似文献   

9.
The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.  相似文献   

10.
In this study, landfill leachate treatment technologies alternative to anaerobic treatment were experimentally investigated. The emphasis was placed upon nitrogen removal through the use of struvite precipitation. Treatment technologies studied included struvite precipitation, low pH (acidic) air stripping, and activated sludge. Dilution of landfill leachate was used as a means to obtain appropriate quality for feeding the activated sludge process in some instances. Five main treatment combinations were applied. The first and second schemes were struvite precipitation followed by activated sludge process which was fed on undiluted and diluted (1:5) effluents. The third scheme was dilution, activated sludge and struvite precipitation. The fourth alternative was acidic air stripping, struvite precipitation and activated sludge process. The fifth scheme was acidic air stripping, activated sludge and struvite precipitation. All treatment schemes provided comparable COD and ammonia removals, all being around 90%. The treatment schemes incorporating the acidic air stripping, however, was found to be the most advantageous in terms of both efficiency and volume and aeration requirements of the activated sludge process since over 80% COD could be removed in the stripping step. Of the fourth and fifth alternative schemes, the fourth was the most efficient, providing 95% removal of both COD and ammonia. Initial dilution of the leachate at a 1:5 ratio was the least effective one, yielding 90% or lower removals for COD and ammonia. The first scheme, namely application of struvite precipitation to raw leachate followed by activated sludge with or without dilution, proved to be a practical system, providing over 85% COD and 99% ammonia removals. High organic loading up to 0.8 g COD/g VSS day was found to be applicable within this scheme.  相似文献   

11.
The main purpose of this research is to clarify and compare the mechanism of waste stabilization by a recirculatory semi-aerobic landfill with the aeration system. Our research is proposing the semi-aerobic landfill system for developing countries because of the simple and low-cost technology for the final disposal. Moreover, this system with leachate recirculation can be a more effective system for waste stabilization because of the improvement of leachate quality as an organic pollutant and, also, nitrogen removal. In this research, five different systems of landfill (Ae: aerobic, An: anaerobic, Se: semi-aerobic, SeR: recirculatory semi-aerobic landfill, and SeRA: recirculatory semi-aerobic landfill with aeration system) are compared with lysimeters which are 1 m high with a diameter of 0.3 m. The results of the leachate quality shows that the leachate treatment effect of the SeRA system can be observed to be as high as the Ae system. To determine the mechanism of this process, all lysimeters are dismantled after 1,100 days in the experimental period and the waste composition, the dissolution test, the mass balance of carbon and nitrogen, the determination of bacterial counts, etc., were analyzed. In this research, it was proven that the SeRA system has an optimal leachate treatment effect that is the same as the Ae system. And, from the results of the mass balance of carbon and nitrogen, the SeR and SeRA systems show higher waste stabilization effectiveness and nitrogen removal than the other systems. Moreover, the number of the aerobic bacteria can be observed to be higher in the SeR and SeRA systems. To determine these results, the waste stabilization mechanism is considered by the results of leachate quality, the mass balance of carbon and nitrogen, and, also, the bacterial numbers.  相似文献   

12.
A treatment procedure to allow the disposal of waste ferrous sulphate was developed. This waste contains sulphuric acid and originates from titanium dioxide production. The process is based on simultaneous neutralization and stabilization/solidification (S/S) of the waste by means of fluidized bed combustion product (FBC-P). The prepared stabilized waste specimens have a solid matrix and their batch leachates display practically neutral pH and also satisfactory conductivity values. The leachate composition is notable in its absence of toxic metals and even iron.  相似文献   

13.
The purpose of this study was to evaluate suitability of using the time series analysis for selected leachate quantity and quality parameters to forecast the duration of post closure period of a closed landfill. Selected leachate quality parameters (i.e., sodium, chloride, iron, bicarbonate, total dissolved solids (TDS), and ammonium as N) and volatile organic compounds (VOCs) (i.e., vinyl chloride, 1,4-dichlorobenzene, chlorobenzene, benzene, toluene, ethyl benzene, xylenes, total BTEX) were analyzed by the time series multiplicative decomposition model to estimate the projected levels of the parameters. These parameters were selected based on their detection levels and consistency of detection in leachate samples. In addition, VOCs detected in leachate and their chemical transformations were considered in view of the decomposition stage of the landfill. Projected leachate quality trends were analyzed and compared with the maximum contaminant level (MCL) for the respective parameters. Conditions that lead to specific trends (i.e., increasing, decreasing, or steady) and interactions of leachate quality parameters were evaluated. Decreasing trends were projected for leachate quantity, concentrations of sodium, chloride, TDS, ammonia as N, vinyl chloride, 1,4-dichlorobenzene, benzene, toluene, ethyl benzene, xylenes, and total BTEX. Increasing trends were projected for concentrations of iron, bicarbonate, and chlorobenzene. Anaerobic conditions in landfill provide favorable conditions for corrosion of iron resulting in higher concentrations over time. Bicarbonate formation as a byproduct of bacterial respiration during waste decomposition and the lime rock cap system of the landfill contribute to the increasing levels of bicarbonate in leachate. Chlorobenzene is produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The time series multiplicative decomposition model in general provides an adequate forecast for future planning purposes for the parameters monitored in leachate. The model projections for 1,4-dichlorobenzene were relatively less accurate in comparison to the projections for vinyl chloride and chlorobenzene. Based on the trends observed, future monitoring needs for the selected leachate parameters were identified.  相似文献   

14.
Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2(6-1) experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO2 until the pH was stable for 2.5h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.  相似文献   

15.
To simulate a submerged combustion evaporation (SCE) process under laboratory conditions, this study conducted three kinds of indirect-heating evaporation experiments, including normal evaporation, vacuum evaporation, and gas-carrying evaporation experiments on mature municipal solid waste (MSW) landfill leachate. The results showed that the organic concentrations in terms of COD in condensates were always very high at the beginning, then decreased rapidly, and stabilized at a low level, which suggests that only the forepart of vapors need to be safely treated to control the discharge of organic pollutants. This study applied the process in developing a two-stage SCE system, which has been implemented for the treatment of biologically pretreated and concentrated leachate from Membrane Bioreactor (MBR) and Reverse Osmosis (RO) combined process in the Beishenshu MSW Landfill, Beijing, China. The result shows that the two-stage SCE system can successfully further concentrate refractory organic matter in concentrated leachate and remove volatile organics from the vapor.  相似文献   

16.
Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD5, NH4–N, NO2–N, NO3–N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation–reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application.  相似文献   

17.
Electrochemical oxidation for landfill leachate treatment   总被引:10,自引:0,他引:10  
This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.  相似文献   

18.
Dissolved organic matter (DOM) from wastewater rejected by nanofiltration from a landfill leachate treatment plant was fractionated into humic acid (HA), fulvic acid (FA) and hydrophilic (HyI) fractions. It was found that humic substances (HA and FA) composed 75% of the total dissolved organic carbon (DOC) concentration of the DOM, with an average molecular weight of about 1000 Da. Elemental analysis, infrared spectroscopy, UV-visible spectroscopy and acid-base titration observations showed that the HA and FA of the DOM exhibited lower fractions of condensed aromatic functional groups but larger fractions of acidic groups compared with other aquatic DOMs. The properties of HA and FA were similar, but HA exhibited more complete humification, while the HyI fraction had more acidic groups. An aminated polymeric adsorbent NDA-8 was used to adsorb the DOM in the wastewater along with primary coagulation. Results of bench-scale experiments indicated that the treatment process could effectively remove the DOM and heavy metals while desorption liquid was 10 times more condensed than raw wastewater. Results of desorption and reproducibility tests consolidated the strong application potential of this treatment process as an advanced landfill leachate treatment technology.  相似文献   

19.
渗透法处理高盐废水的原理及工艺   总被引:2,自引:0,他引:2  
为改观当前高盐废水处理成本居高不下的现状,以分析渗透法处理高盐废水的基本原理为基础,提出渗透法处理高盐废水的新工艺.以溶质氨的设计溶液为例,分析高盐废水处理的新工艺流程及工艺的可行性,并对比反渗透工艺,详细阐述新工艺的优点.分析认为,基于渗透原理的高盐废水处理工艺可降低高盐废水的处理成本,具有良好的应用前景.  相似文献   

20.
In tropical regions, landfill leachate contamination at municipal solid waste disposal sites is a critical issue because of the large volume of highly contaminated leachate formed during the rainy season. We evaluated the efficacy of constructed wetlands (CWs) with the ability to reduce the water volume and pollutant levels to reduce leachate contamination compared to the most commonly used treatment system, stabilization ponds, based on parameters obtained in a field experiment in Thailand. The simulation indicated that CWs had a higher potential to reduce the water volume than stabilization ponds over the course of a year. Scenario evaluations under varying initial water depths, system depths, and area sizes indicated that the CWs could reduce the treatment area to prevent overflow and leachate pollution. In addition, the CWs were estimated to reduce the leachate amount and pollution by 83–100% and 92–99%, respectively. When there is limited land available, deeper CWs can be used to sustainably prevent contamination from leachate overflow. Effectively designed CW systems may be valuable for both reducing the required area and the contamination; therefore, CWs are a promising option for sustainable landfill leachate treatment systems in developing tropical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号