首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thompson (1990) introduced the adaptive cluster sampling design. This sampling design has been shown to be a useful sampling method for parameter estimation of a clustered and scattered population (Roesch, 1993; Smith et al., 1995; Thompson and Seber, 1996). Two estimators, the modified Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators, are available to estimate the mean or total of a population. Empirical results from previous researches indicate that the modified HT estimator has smaller variance than the modified HH estimator. We analytically compare the properties of these two estimators. Some results are obtained in favor of the modified HT estimator so that practitioners are strongly recommended to use the HT estimator despite easiness of computations for the HH estimator.  相似文献   

2.
Thompson (1990) introduced the adaptive cluster sampling design and developed two unbiased estimators, the modified Horvitz-Thompson (HT) and Hansen-Hurwitz (HH) estimators, for this sampling design and noticed that these estimators are not a function of the minimal sufficient statistics. He applied the Rao-Blackwell theorem to improve them. Despite having smaller variances, these latter estimators have not received attention because a suitable method or algorithm for computing them was not available. In this paper we obtain closed forms of the Rao-Blackwell versions which can easily be computed. We also show that the variance reduction for the HH estimator is greater than that for the HT estimator using Rao-Blackwell versions. When the condition for extra samples is 0$$ " align="middle" border="0"> , one can expect some Rao-Blackwell improvement in the HH estimator but not in the HT estimator. Two examples are given.  相似文献   

3.
Adaptive cluster sampling (ACS) is an efficient sampling design for estimating parameters of rare and clustered populations. It is widely used in ecological research. The modified Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators based on small samples under ACS have often highly skewed distributions. In such situations, confidence intervals based on traditional normal approximation can lead to unsatisfactory results, with poor coverage properties. Christman and Pontius (Biometrics 56:503–510, 2000) showed that bootstrap percentile methods are appropriate for constructing confidence intervals from the HH estimator. But Perez and Pontius (J Stat Comput Simul 76:755–764, 2006) showed that bootstrap confidence intervals from the HT estimator are even worse than the normal approximation confidence intervals. In this article, we consider two pseudo empirical likelihood functions under the ACS design. One leads to the HH estimator and the other leads to a HT type estimator known as the Hájek estimator. Based on these two empirical likelihood functions, we derive confidence intervals for the population mean. Using a simulation study, we show that the confidence intervals obtained from the first EL function perform as good as the bootstrap confidence intervals from the HH estimator but the confidence intervals obtained from the second EL function perform much better than the bootstrap confidence intervals from the HT estimator, in terms of coverage rate.  相似文献   

4.
Adaptive cluster sampling (ACS) has received much attention in recent years since it yields more precise estimates than conventional sampling designs when applied to rare and clustered populations. These results, however, are impacted by the availability of some prior knowledge about the spatial distribution and the absolute abundance of the population under study. This prior information helps the researcher to select a suitable critical value that triggers the adaptive search, the neighborhood definition and the initial sample size. A bad setting of the ACS design would worsen the performance of the adaptive estimators. In particular, one of the greatest weaknesses in ACS is the inability to control the final sampling effort if, for example, the critical value is set too low. To overcome this drawback one can introduce ACS with clusters selected without replacement where one can fix in advance the number of distinct clusters to be selected or ACS with a stopping rule which stops the adaptive sampling when a predetermined sample size limit is reached or when a given stopping rule is verified. However, the stopping rule breaks down the theoretical basis for the unbiasedness of the ACS estimators introducing an unknown amount of bias in the estimates. The current study improves the performance of ACS when applied to patchy and clustered but not rare populations and/or less clustered populations. This is done by combining the stopping rule with ACS without replacement of clusters so as to further limit the sampling effort in form of traveling expenses by avoiding repeat observations and by reducing the final sample size. The performance of the proposed design is investigated using simulated and real data.  相似文献   

5.
Adaptive two-stage one-per-stratum sampling   总被引:1,自引:0,他引:1  
We briefly describe adaptive cluster sampling designs in which the initial sample is taken according to a Markov chain one-per-stratum design (Breidt, 1995) and one or more secondary samples are taken within strata if units in the initial sample satisfy a given condition C. An empirical study of the behavior of the estimation procedure is conducted for three small artificial populations for which adaptive sampling is appropriate. The specific sampling strategy used in the empirical study was a single random-start systematic sample with predefined systematic samples within strata when the initially sampled unit in that stratum satisfies C. The bias of the Horvitz-Thompson estimator for this design is usually very small when adaptive sampling is conducted in a population for which it is suited. In addition, we compare the behavior of several alternative estimators of the standard error of the Horvitz-Thompson estimator of the population total. The best estimator of the standard error is population-dependent but it is not unreasonable to use the Horvitz-Thompson estimator of the variance. Unfortunately, the distribution of the estimator is highly skewed hence the usual approach of constructing confidence intervals assuming normality cannot be used here.  相似文献   

6.

For many clustered populations, the prior information on an initial stratification exists but the exact pattern of the population concentration may not be predicted. Under this situation, the stratified adaptive cluster sampling (SACS) may provide more efficient estimates than the other conventional sampling designs for the estimation of rare and clustered population parameters. For practical interest, we propose a generalized ratio estimator with the single auxiliary variable under the SACS design. The expressions of approximate bias and mean squared error (MSE) for the proposed estimator are derived. Numerical studies are carried out to compare the performances of the proposed generalized estimator over the usual mean and combined ratio estimators under the conventional stratified random sampling (StRS) using a real population of redwood trees in California and generating an artificial population by the Poisson cluster process. Simulation results show that the proposed class of estimators may provide more efficient results than the other estimators considered in this article for the estimation of highly clumped population.

  相似文献   

7.
Practical considerations often motivate employing variable probability sampling designs when estimating characteristics of forest populations. Three distribution function estimators, the Horvitz-Thompson estimator, a difference estimator, and a ratio estimator, are compared following variable probability sampling in which the inclusion probabilities are proportional to an auxiliary variable, X. Relative performance of the estimators is affected by several factors, including the distribution of the inclusion probabilities, the correlation () between X and the response Y, and the position along the distribution function being estimated. Both the ratio and difference estimators are superior to the Horvitz-Thompson estimator. The difference estimator gains better precision than the ratio estimator toward the upper portion of the distribution function, but the ratio estimator is superior toward the lower end of the distribution function. The point along the distribution function at which the difference estimator becomes more precise than the ratio estimator depends on the sampling design, as well as the coefficient of variation of X and . A simple confidence interval procedure provides close to nominal coverage for intervals constructed from both the difference and ratio estimators, with the exception that coverage may be poor for the lower tail of the distribution function when using the ratio estimator.  相似文献   

8.
Although not design-unbiased, the ratio estimator is recognized as more efficient when a certain degree of correlation exists between the variable of primary interest and the auxiliary variable. Meanwhile, the Rao–Blackwell method is another commonly used procedure to improve estimation efficiency. Various improved ratio estimators under adaptive cluster sampling (ACS) that make use of the auxiliary information together with the Rao–Blackwellized univariate estimators have been proposed in past research studies. In this article, the variances and the associated variance estimators of these improved ratio estimators are proposed for a thorough framework of statistical inference under ACS. Performance of the proposed variance estimators is evaluated in terms of the absolute relative percentage bias and the empirical mean-squared error. As expected, results show that both the absolute relative percentage bias and the empirical mean-squared error decrease as the initial sample size increases for all the variance estimators. To evaluate the confidence intervals based on these variance estimators and the finite-population Central Limit Theorem, the coverage rate and the interval width are used. These confidence intervals suffer a disadvantage similar to that of the conventional ratio estimator. Hence, alternative confidence intervals based on a certain type of adjusted variance estimators are constructed and assessed in this article.  相似文献   

9.
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.  相似文献   

10.
Ranked set sampling can provide an efficient basis for estimating parameters of environmental variables, particularly when sampling costs are intrinsically high. Various ranked set estimators are considered for the population mean and contrasted in terms of their efficiencies and useful- ness, with special concern for sample design considerations. Specifically, we consider the effects of the form of the underlying random variable, optimisation of efficiency and how to allocate sampling effort for best effect (e.g. one large sample or several smaller ones of the same total size). The various prospects are explored for two important positively skew random variables (lognormal and extreme value) and explicit results are given for these cases. Whilst it turns out that the best approach is to use the largest possible single sample and the optimal ranked set best linear estimator (ranked set BLUE), we find some interesting qualitatively different conclusions for the two skew distributions  相似文献   

11.
The paper deals with the problem of estimating diversity indexes for an ecological community. First the species abundances are unbiasedly and consistently estimated using designs based on n random and independent selections of plots, points or lines over the study area. The problem of sampling elusive populations is also considered. Finally, the diversity index estimates are obtained as functions of the abundance estimates. The resulting estimators turn out to be asymptotically (n large) unbiased, even if a considerable bias may occur for a small n. Accordingly, the method of jackknifing is made use of in order to reduce bias.  相似文献   

12.
This paper reviews design-based estimators for two- and three-stage sampling designs to estimate the mean of finite populations. This theory is then extended to spatial populations with continuous, infinite populations of sampling units at the latter stages. We then assume that the spatial pattern is the result of a spatial stochastic process, so the sampling variance of the estimators can be predicted from the variogram. A realistic cost function is then developed, based on several factors including laboratory analysis, time of fieldwork, and numbers of samples. Simulated annealing is used to find designs with minimum sampling variance for a fixed budget. The theory is illustrated with a real-world problem dealing with the volume of contaminated bed sediments in a network of watercourses. Primary sampling units are watercourses, secondary units are transects perpendicular to the axis of the watercourse, and tertiary units are points. Optimal designs had one point per transect, from one to three transects per watercourse, and the number of watercourses varied depending on the budget. However, if laboratory costs are reduced by grouping all samples within a watercourse into one composite sample, it appeared to be efficient to sample more transects within a watercourse.  相似文献   

13.
The combined mark-recapture and line transect sampling methodology proposed by Alpizar-Jara and Pollock [Journal of Environmental and Ecological Statistics, 3(4), 311–327, 1996; In Marine Mammal Survey and Assessment Methods Symposium. G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.C. Robertson (Eds.), A.A. Balkema, Rotterdam, Netherlands, pp. 99–114, 1999] is used to illustrate the estimation of population size for populations with prominent nesting structures (i.e., bald eagle nests). In the context of a bald eagle population, the number of nests in a list frame corresponds to a pre-marked sample of nests, and an area frame corresponds to a set of transect strips that could be regularly monitored. Unlike previous methods based on dual frame methodology using the screening estimator [Haines and Pollock (Journal of Environmental and Ecological Statistics, 5, 245–256, 1998a; Survey Methodology, 24(1), 79–88, 1998b)], we no longer need to assume that the area frame is complete (i.e., all the nests in the sampled sites do not need to be seen). One may use line transect sampling to estimate the probability of detection in a sampled area. Combining information from list and area frames provides more efficient estimators than those obtained by using data from only one frame. We derive an estimator for detection probability and generalize the screening estimator. A simulation study is carried out to compare the performance of the Chapman modification of the Lincoln–Petersen estimator to the screening estimator. Simulation results show that although the Chapman estimator is generally less precise than the screening estimator, the latter can be severely biased in presence of uncertain detection. The screening estimator outperforms the Chapman estimator in terms of mean squared error when detection probability is near 1 wheareas the Chapman estimator outperforms the screening estimator when detection probability is lower than a certain threshold value depending on particular scenarios.  相似文献   

14.
Adaptive two-stage sequential sampling (ATSSS) design was developed to observe more rare units and gain higher efficiency, in the sense of having a smaller variance estimator, than conventional sampling designs with equal effort for rare and spatially cluster populations. For certain rare populations, incorporating auxiliary variables into a sampling design can further improve the observation of rare units and increase efficiency. In this article, we develop regression-type estimators for ATSSS so that auxiliary variables can be incorporated into the ATSSS design when warranted. Simulation studies on two populations show that the regression-type estimators can significantly increase the efficiency of ATSSS and the detection of more rare units as compared to conventional sampling counterparts. Simulation of sampling of desert shrubs in Inner Mongolia (one of the two populations studied) showed that by incorporating a GIS auxiliary variable into ATSSS with the regression estimators resulted in a gain in efficiency over ATSSS without the auxiliary variable. Further, we found that the use of the GIS auxiliary variable in a conventional two-stage design with a regression estimator did not show a gain in efficiency.  相似文献   

15.
Restricted adaptive cluster sampling   总被引:4,自引:0,他引:4  
Adaptive cluster sampling can be a useful design for sampling rare and patchy populations. With this design the initial sample size is fixed but the size of the final sample (and total sampling effort) cannot be predicted prior to sampling. For some populations the final sample size can be quite variable depending on the level of patchiness. Restricted adaptive cluster sampling is a proposed modification where a limit is placed on the sample size prior to sampling and quadrats are selected sequentially for the initial sample size. As a result there is less variation in the final sample size and the total sampling effort can be predicted with some certainty, which is impor- tant for many ecological studies. Estimates of density are biased with the restricted design but under some circumstances the bias can be estimated well by bootstrapping. © Rapid Science 1998  相似文献   

16.
When sample observations are expensive or difficult to obtain, ranked set sampling is known to be an efficient method for estimating the population mean, and in particular to improve on the sample mean estimator. Using best linear unbiased estimators, this paper considers the simple linear regression model with replicated observations. Use of a form of ranked set sampling is shown to be markedly more efficient for normal data when compared with the traditional simple linear regression estimators.  相似文献   

17.
Recently the two-phase adaptive stratified sampling design proposed by Francis (1984) has been extended by Manly et al. (2002) for situations where several biological populations are sampled simultaneously, and where this is done at several different geographical locations in order to estimate population totals or means. The method uses the results from a first phase sample to decide how best to allocate a second phase sample to locations and strata, in order to maximise a criterion (based on estimated coefficients of variation) that measures the accuracy of estimation for population totals, for all variables at all locations. One potential problem with this method is bias in the estimators of the population totals and means. In this paper bootstrapping is considered as a means of overcoming these biases. It is shown using model populations of Pacific walrus and shellfish, based on real data, that bootstrapping is a useful tool for removing about half of the bias. This is also confirmed from some simulations using artificial data.  相似文献   

18.
Ranked set sampling was developed for situations where measurement cost is expensive compared with unit acquisition. This paper presents results of simulations and theory examining the impact of balanced ranked set sampling on the relative efficiencies of the slope and intercept estimators of an ordinary least squares regression. Perfect ranking of either the independent or the dependent variable is assumed throughout. In contradistinction to most of the published ranked set sampling work, it is demonstrated that balanced ranked set sampling offers at most little improvement in the relative efficiencies of the slope estimator at any sample size.  相似文献   

19.
A ranked set sampling protocol is proposed when an auxiliary variable is available in addition to the target variable in sample surveys. The protocol may be practically carried out without additional sampling effort or costs. Under the suggested sampling scheme, the estimators usually adopted in surveys with auxiliary information - such as the ratio estimator or the regression estimator - display surprising theoretical properties as well as high performance in practice.  相似文献   

20.
Randomized graph sampling (RGS) is an approach for sampling populations associated with or describable as graphs, when the structure of the graph is known and the parameter of interest is the total weight of the graph. RGS is related to, but distinct from, other graph-based approaches such as snowball and network sampling. Graph elements are clustered into walks that reflect the structure of the graph, as well as operational constraints on sampling. The basic estimator in RGS can be constructed as a Horvitz-Thompson estimator. I prove it to be design-unbiased, and also show design-unbiasedness of an estimator of the sample variance when walks are sampled with replacement. Covariates can be employed for variance reduction either through improved assignment of selection probabilities to walks in the design step, or through the use of alternative estimators during analysis. The approach is illustrated with a trail maintenance example, which demonstrates that complicated approaches to assignment of selection probabilities can be counterproductive. I describe conditions under which RGS may be efficient in practice, and suggest possible applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号