首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   

2.
Acid mine drainage problems were experienced in a Pb–Zn mine operation at Lechang, in the northern part of Guangdong Province, People's Republic of China. Geochemical and acid generation evaluations were made on fresh tailings including tailings fine, tailings sand and high sulphide tailings, and oxidised tailings with the aim of providing information on mine rehabilitation. All fresh tailings had a pH higher than 7 while the oxidised tailings had a pH of 4.9 (range 1.6 to 7.4). Only samples with pH < 3 had an electrical conductivity (EC) > 4 dS m-1. Total S contents of all tailings samples were very high with the high sulphide fraction having a mean S content of 38%. All fresh tailings had a high acid neutralisation capacity (ANC) while half of the oxidised tailings had an ANC less than zero. The results from the acid–base account and the net acid generation test indicated that all fresh and oxidised tailings samples were acid-forming except for the sand fraction samples. All tailings samples contained high total concentrations of Cd, Cu, Fe, Pb and Zn but low concentrations of total nitrogen and phosphorus. The preliminary results demonstrated that the tailings were all acid-forming especially the high sulphide fraction which should be kept permanently unexposed under impermeable cap or water.  相似文献   

3.
Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80 % of total As.  相似文献   

4.
The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10–100 μm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L−1 HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone.  相似文献   

5.
The study was conducted to characterize mineralogical and elemental composition of mine tailings in order to evaluate the environmental hazards, and identify the metal accumulation potential of native plant species from São Domingos mine, one of the long-term activity mines of the Iberian Pyrite Belt dating back to pre-Roman times. The mine tailings including soils and different plant species from São Domingos were analyzed for determination of tailings characteristics and chemical element contents in tailings and plants. The large amounts of mining wastes are causing significant adverse environment impacts due to acid mine drainage production and mobilization of potentially toxic metals and metalloids in residential areas, agricultural fields, downstreams, and rivers. The typical mineralogical composition is as follows: quartz, micas, K-feldspar, olivine-group minerals, magnetite, goethite, hematite, jarosite, and sulfides. The mine tailings were highly contaminated by As, Ag, Cr, Hg, Sn, Sb, Fe, and Zn; and among them, As and Sb, main contaminants, attained the highest concentrations except Fe. Arsenic has exhibited very good correlations with Au, Fe, Sb, Se, and W; and Sb with As, Au, Fe, Se, Sn, and W in tailings. Among the all plant species, the higher concentrations of all the metals were noted in Erica andevalensis, Erica australis, Echium plantagium, and Lavandula luisierra. Considering the tolerant behavior and abundant growth, the plant species Erica australis, Erica andevalensis, Lavandula luisierra, Daphne gnidium, Rumex induratus, Ulex eriocladus, Juncus, and Genista hirsutus are of major importance for the rehabilitation and recovery of degraded São Domingos mining area.  相似文献   

6.
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As–Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As–Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7–91.1% of the As in tailings were NH4-oxalate extractable As, further confirmed the predominance of amorphous As–Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01–3.10) and high concentrations of dissolved As (up to 29.5 mg L−1), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7–522 μg L−1 of As. The amorphous As–Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.  相似文献   

7.
High concentrations of total arsenic (As) have been measured in soils of gold mining areas of Brazil. However, bioaccessibility tests have not yet been conducted on those materials, which is essential for better health risk estimates. This study aimed at?evaluating As bioaccessibility in samples from a gold mining area located in Brazil and assessing children's exposure to As-contaminated materials. Samples were collected from different materials (a control and four As-contaminated soils/sediments) found in a gold mine area located in Paracatu (MG), Brazil. Total and bioaccessible As concentrations were determined for all samples. The control soil presented the lowest As concentrations, while all other materials contained high total As concentrations (up to 2,666?mg?kg(-1)) and low bioaccessible As percentage (<4.2%), indicating a low risk from exposure of resident children next to this area. The calculated dose of exposure indicated that, except for the pond tailings, in all other areas, the exposure route considering soil ingestion contributed at most to 9.7% of the maximum As allowed ingestion per day (0.3?μg?kg(-1) BW day(-1)).  相似文献   

8.
Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg?1 for Pb and up to 20,000 mg kg?1 for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.  相似文献   

9.
大同盆地是典型的高砷地下水分布区。利用从地方性砷中毒严重病区山阴县采集的高砷地下水样品,用稀释培养法实验研究了外加砷源对地下水中微生物数量的影响;同时基于生物学可培养法和16SrDNA序列比对法,选取代表性高砷水样,研究了耐砷菌的种群特征。结果表明,外加砷源对地下水中微生物数量影响显著,高浓度砷会抑制大部分微生物生长,使微生物数量减少;低浓度砷对微生物生长具有一定促进作用。通过多次分离、纯化从3个不同砷含量地下水样中分离到多株砷抗性菌,经鉴定属于主要为Bacillus、Pseudomonas、Paenibacillus、Aeromonas、Enterobacter5个属。从RDP(RibosomalDatabaseProject)分析显示3个水样可培养微生物组成不同,都有生存能力强能够耐低浓度NaAsO2的Bacillales,优势耐砷菌是γ-proteobacteria,其中Enterbacter具有耐高浓度NaAsO2的能力。  相似文献   

10.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

11.
A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC–BET–alkalinity, and alkalinity–ash content. These comprehensive characterization and analysis results on biochars’ properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.  相似文献   

12.
The technique of microcosm sediment-water simulation was used to obtain predictive water quality data for the proposed Jordanelle Reservoir, Heber City, Utah. Sediment-water microcosms were prepared for four sites located in the north arm of the reservoir basin, including two sites located in an abandoned acid mine tailings pond. Data obtained from the tailings pond microcosms indicated that low pH water and high trace metal concentrations may exist in this area of the reservoir. These data suggested that the tailings material should be contained or removed prior to reservoir filling. Other sites in the reservoir basin exhibited water quality considered normal for reservoirs of similar elevation and basin geology. Near the proposed dam, anaerobic conditions could develop rapidly due to available concentrations of organic carbon, and the subsequent release of Zn, Fe, and Mn may pose a water quality problem. At the sampling site near Keetley, simulation data indicated that anaerobic conditions will not develop as quickly or be as severe as conditions expected near the dam. Overall, the availability of nitrogen and phosphorus in the Provo River and Jordanelle sediments indicated that problems with algal blooms may exist in the reservoir. Also presented is a brief discussion of the advantages and disadvantages associated with microcosm sediment-water simulation.  相似文献   

13.
The Shizhuyuan Polymetallic Mine in Chen-zhou City is an important multi-metal deposit in China. After a dam accident in 1985, there are still a number of mining plants, smelters and tailing ponds in this area. These had the potential to pollute the surrounding groundwater. In this study, groundwater samples were collected from 20 residents’ wells in this area during both dry and wet seasons. In particular, this study focused on the exposure and the health risk assessment of trace heavy metal in groundwater. Multiple statistical analysis and fuzzy comprehensive method were employed to reveal the distribution characteristics of heavy metal and to assess the groundwater quality. Results indicated that Cr, Fe, Ni, Cu, Zn, As, Cd, Ba, Hg and Pb were widespread with low exposure levels. There were 19 wells with low level exposure and one well with a moderate level exposure in the dry season. All of the wells were in low level exposure during the wet season. As and Mn exhibited potential non-carcinogenic concern, because their maximum hazard quotient (HQ) was higher than 1.0. This may cause adverse health effect on adults in dry season or on children in both seasons. Only As, showed that the maximum carcinogenic risk was more than 10−4, suggesting a high cancer risk for children in both dry and wet seasons. Therefore, analysis and reduction the concentrations of As and Mn in groundwater are needed in order to protect the health of residents and especially children in the area.  相似文献   

14.
The objective of this study is to examine the solidification of toxic elements in tailings by the use of cement and blast furnace slag. Tailings samples were taken at an Au-Ag mine in Korea. To examine the best mixing ratio of tailings and the mixture of ordinary Portland cement (OPC) and blast furnace slag (SG) of 5:5, 6:6, 7:3, and 8:2, the 7:3 ratio of tailings and OPC+SG was adapted. In addition, the mixing ratios of water and OPC + SG were applied to 10, 20, and 30 wt%. After 7, 14, and 28 days' curing, the UCS test was undertaken. A relatively high strength of solidified material (137.2 kg cm?2 in average of 3 samples) at 28 days' curing was found in 20 wt% of water content (WC). This study also examined the leachability of arsenic and heavy metals (Cd, Cu, Pb, and Zn) under the Korean Standard Leaching Test, and it showed that the reductions in leachabilities of As and heavy metals of solidified samples were ranged from 76 to 99%. Thus, all the solidified samples were within the guidelines for special and hazardous waste materials by the Waste Management Act in Korea. In addition, the result of freeze-thaw cycle test of the materials indicated that the durability of the materials was sufficient. In conclusion, solidification using a 7:3 mixing ratio of tailings and a 1:1 mixture of OPC + SG with 20% of WC is one of the best methods for the remediation of arsenic and heavy metals in tailings and other contaminated materials.  相似文献   

15.
镍钴采选废石和尾矿中重金属的溶出释放规律对矿区的重金属污染防治具有重要意义。但目前,国内还没有对镍钴行业采选产生的尾矿和废石中重金属的溶出规律开展研究。本文以镍钴采选企业的尾矿和废石作为样本,开展了毒性浸出实验。研究了不同pH值、离子强度、温度等实验条件对重金属溶出的影响,探讨了镍钴采选过程中所产生的尾矿和废石中重金属的溶出特性和释放规律。实验结果表明,尾矿样品中Ni的浸出浓度为42.28 mg·L^-1,是最大允许排放浓度的8.86倍,为具有浸出毒性特征的危险废物;废石样品中重金属Ni和Cu的溶出浓度分别为4.72 mg·L^-1和26.2 mg·L^-1,超过最大允许排放浓度,属于第Ⅱ类一般工业固体废物。pH对样品中Ni、Cr、Pb、Co和As的溶出量影响较大,其中尾矿中Ni和Cu在pH较低的条件下,可达到44.28 mg·L^-1和53 mg·L^-1,远高于最大允许排放浓度,而Hg、Cd和Cu的溶出量随pH值的变化不大。除As以外,样品中大多数重金属的溶出质量浓度在酸性条件下比在中性条件下高,这表明在酸性环境条件下,这些重金属对周围生态环境的潜在风险更大。离子强度的变化对Cd和Co的溶出量的变化并不明显,而当离子强度变化时,Ni、Cr、Pb、Hg、Cu和As的溶出量可能达到最大,使周围环境的潜在生态风险增大。当温度达到35~40℃时,部分重金属如Co、Pb、Cd 等,溶出量将达到最大;当温度低于25℃时,除 Ni 以外,大部分重金属溶出量很低。而温度变化对重金属Cu、As、Cr和Hg的溶出量的影响不明显,波动范围较小,对周围生态环境产生的潜在生态风险较小。  相似文献   

16.
Understanding the mechanism of arsenic (As) mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Datong basin in northern China. The bulk geochemistry analysis of sediment samples from three 50-m boreholes drilled specifically for this study at As-contaminated aquifers, the groundwaters of which have an As concentration up to 1060 μg/l, revealed that the average bulk concentrations of major and trace elements of the samples are similar to those of the average upper continental crust. The average As content of the sediment samples (18.7 mg/kg) is higher than that of modern unconsolidated sediments (5–10 mg/kg). Moreover, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments, such as silt and clay. The concentration of NH2OH–HCl-extracted iron (Fe) strongly correlated with that of extracted As, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. The results of microcosm experiments showed that As mobilization from sediments to groundwater is probably mainly related to changes in the redox conditions, with moderately reducing conditions being favorable for As release from sediments into groundwater.  相似文献   

17.
A field survey of mercury pollution in environmental media and human hair samples obtained from residents living in the area surrounding the Chatian mercury mine (CMM) of southwestern China was conducted to evaluate the health risks of mercury to local residents. The results showed that mine waste, and tailings in particular, contained high levels of mercury and that the maximum mercury concentration was 88.50 μg g?1. Elevated mercury levels were also found in local surface water, paddy soil, and paddy grain, which may cause severe health problems. The mercury concentration of hair samples from the inhabitants of the CMM exceeded 1.0 μg g?1, which is the limit recommended by the US EPA. Mercury concentrations in paddy soil were positively correlated with mercury concentrations in paddy roots, stalks, and paddy grains, which suggested that paddy soil was the major source of mercury in paddy plant tissue. The average daily dose (ADD) of mercury for local adults and preschool children via oral exposure reached 0.241 and 0.624 μg kg?1 body weight per day, respectively, which is approaching or exceeds the provisional tolerable daily intake. Among the three oral exposure routes, the greatest contributor to the ADD of mercury was the ingestion of rice grain. Open-stacked mine tailings have resulted in heavy mercury contamination in the surrounding soil, and the depth of appreciable soil mercury concentrations exceeded 100 cm.  相似文献   

18.
Abandoned historical gold mining wastes often exist as geographically extensive, unremediated, and poorly contained deposits that contain elevated levels of As and other potentially toxic elements (PTEs). One of the key variables governing human exposure to PTEs in mine waste is particle size. By applying a size-resolved approach to mine waste characterisation, this study reports on the proportions of mine waste relevant to human exposure and mobility, as well as their corresponding PTE concentrations, in four distinct historical mine wastes from the gold province in Central Victoria, Australia. To the best of our knowledge, such a detailed investigation and comparison of historical mining wastes has not been conducted in this mining-affected region. Mass distribution analysis revealed notable proportions of waste material in the readily ingestible size fraction (≤250 µm; 36.1–75.6 %) and the dust size fraction (≤100 µm; 5.9–45.6 %), suggesting a high potential for human exposure and dust mobilisation. Common to all mine waste types were statistically significant inverse trends between particle size and levels of As and Zn. Enrichment of As in the finest investigated size fraction (≤53 µm) is of particular concern as these particles are highly susceptible to long-distance atmospheric transport. Human populations that reside in the prevailing wind direction from a mine waste deposit may be at risk of As exposure via inhalation and/or ingestion pathways. Enrichment of PTEs in the finer size fractions indicates that human health risk assessments based on bulk contaminant concentrations may underestimate potential exposure intensities.  相似文献   

19.
以湖南石门雄黄尾矿污染土壤为对象,研究纵向不同深度、横向不同距离土样中的重金属污染程度以及细菌群落结构变化规律,查明砷污染土壤的核心微生物组成并将其与土壤理化指标进行共存网络图分析。结果表明:该尾矿区的土壤各项重金属指标严重超标,尤以铅(626.54 mg·kg?1,Ei=105.48)、砷(1804.75 mg·kg?1,Ei=565.75)、镉(31.46 mg·kg?1,Ei=7491.5)的生态危害性最强;土壤采样深度与重金属综合潜在生态风险指数(RI)呈显著正相关(r=0.79,P=0.000),而横向样品中RI与采样距离显著负相关(r=?0.85,P=0.000)。在污染土壤中,变形杆菌门(Proteobacteria,54.35%±17.16%)和放线杆菌门(Actinobacteria,22.39%±10.64%)占主导地位,属层级中假单孢杆菌属(Pseudomonas,16.47%±11.84%)、不动杆菌属(Acinetobacter,8.07%±7.11%)以及硫酸状杆菌属(Acidithiobacillus,7.53%±14.68%)相对丰度较高;而26个共享类群占据了该尾矿污染土壤中微生物群落总平均相对丰度90%以上,尽管不同属的具体相对丰度在不同样品间的分布趋势差异较大。纵剖采集的污染土样中,铁原体属(Ferroplasma)、硫酸状杆菌属(Acidithiobacillus)、硫化杆菌属(Sulfobacillus)、乳杆菌属(Lactobacillus)和硝化螺旋菌属(Nitrospira)占优势,与理化的共存网络图分析(相关系数|r|≥0.6,P<0.05)显示部分类群与亚铁、游离态砷和镉成显著正相关,而与pH成显著负相关;横向采集的土样中,以嗜酸菌属(Acidiphilium)、假单孢杆菌属(Pseudomonas)、棒状杆菌属(Corynebacterium)、硫杆菌属(Thiobacillus)等为主,部分类群与总砷、铅成显著正相关,而与结合态或包蔽型砷成显著负相关。综上,该研究不仅对目标区域尾矿不同重金属污染程度进行了分析,同时探讨了污染土壤中核心响应类群的组成多样性,为筛选潜在重金属抗性菌群或工程菌群提供理论基础。  相似文献   

20.
Physico-chemical parameters were analysed to evaluate the groundwater quality of the two important cities of Haryana, Faridabad and Rohtak, and the pollution status of groundwater was compared using deviation index (DI). Groundwater of both the cities had high alkalinity, hardness, total dissolved solids (TDS) and electrical conductivity. The groundwater of Faridabad showed low fluoride concentration whereas in 74% of groundwater samples of Rohtak the fluoride levels were high. Land use and waste disposal practices were found to have an important effect on groundwater pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号