首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
狼尾草根系对阿特拉津长期胁迫的氧化应激响应   总被引:2,自引:0,他引:2  
通过盆栽实验研究了抗性植物狼尾草根部丙二醛(MDA)、脯氨酸(Pro)、抗坏血酸(As A)含量及超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)等氧化应激生理指标对不同浓度阿特拉津长期(48 d)胁迫的响应规律。结果表明:当阿特拉津胁迫浓度分别高于20 mg·kg~(-1)和50 mg·kg~(-1)时,狼尾草根系的MDA与Pro含量较对照组显著升高(P0.05);随着阿特拉津胁迫浓度的增加,狼尾草根部SOD和GR活性呈先升高后降低的趋势,其中当阿特拉津胁迫浓度为20 mg·kg~(-1)时,SOD和GR活性达到最大值;供试植物根系中As A含量与阿特拉津胁迫浓度呈正相关。综上,中低浓度(≤20 mg·kg~(-1))阿特拉津处理没有对狼尾草的根系产生明显的氧化胁迫效应,狼尾草根系的上述抗氧化应激生理指标对于发挥阿特拉津抗性起着重要的作用。  相似文献   

3.
We investigated phytotoxicity in seven plant species exposed to a range of concentrations (0– 500 mg·kg−1 soil) of di-n-butyl phthalate (DnBP) or bis (2-ethylhexyl) phthalate (DEHP), two representative phthalate esters (PAEs) nominated by USEPA as priority pollutants and known environmental estrogens. We studied seed germination, root elongation, seedling growth, biomass (fresh weight, FW) and malondialdehyde (MDA) content of shoots and roots of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), perennial ryegrass (Lolium perenne), radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), oat (Avena sativa) and onion (Allium cepa L.), together with monitoring of plant pigment content (chlorophyll a, b and carotinoids) in alfalfa, radish and onion shoots. Root elongation, seedling growth and biomass of the test species were generally inhibited by DnBP but not by DEHP, indicating a lower level of phytotoxicity of DEHP than of DnBP. MDA contents of four species were promoted by PAE exposure, but not in alfalfa, ryegrass or onion shoots, indicating lower sensitivity of these three species to PAE pollutants. Plant pigment contents were clearly affected under the stress of both pollutants, implying the potential damage to the photosynthetic system of test plants, mainly by decreasing the content of chlorophyll a and b. Results of DnBP and DEHP phytotoxicity to the primary growth of test plants has provided information for the assessment of their environmental risk in the soil and also forms a basis for the further analysis of their toxic effects over the whole growth period of different plant species.  相似文献   

4.
We investigated the extent of Sb uptake by maize (Zea mays) and sunflower (Helianthus annuus) from nutrient solutions containing concentrations from 3 to 24 mg/L of potassium antimonate, with the aim of determining the potential of Sb to enter the food chain. The maximum shoot Sb concentrations in Z. mays and H. annuus were 41 mg/kg and 77 mg/kg dry weight, respectively. There was no significant difference in Sb uptake between species. The average bioaccumulation coefficients (the plant/solution concentration quotients) were 1.02 and 1.93 for Z. mays and H. annuus, respectively. Phosphate addition did not affect plant growth or Sb uptake. Antimony uptake by both Z. mays and H. annuus is unlikely to pose a health risk to animals and humans.  相似文献   

5.
K. Véliz  M. Edding  F. Tala  I. Gómez 《Marine Biology》2006,149(5):1015-1024
The effects of exposure to ultraviolet radiation (UVR), 280–400 nm, in different life histories and development stages of the kelps, Lessonia nigrescens and L. trabeculata, collected in the south-east Pacific coast (30°S) were evaluated in the laboratory. Germination and viability (motile zoospores, settled spores), diameter of the primary cell of the gametophytes, percentage of female gametophytes, fertility and sporophytes production were measured after exposure to three radiation treatments (PAR; PAR + UVA; PAR + UVA + UVB). The effects of UVR in young sporophytes (diploid stage) were evaluated as changes in maximal quantum yield of chlorophyll fluorescence of photosystem II (PSII) (F v/F m). A significant decrease in all variables was observed for the treatment that included UVB (PAR + UVA + UVB) after 2 and 4 h of exposure, in relation to the control. The motile spores were more sensitive to UVR exposure compared to settled spores and gametophytes, suggesting that along with an increase in ontogenetic development; there is an increase in the tolerance to UVR. In addition, it was observed that early stages of the intertidal L. nigrescens were more tolerant to UVR compared to the subtidal L. trabeculata. These results allow initially to infer that UVR may be regarded as an important environmental factor influencing the upper limit of distribution of these species, mainly through its detrimental effects on the early stages of the life cycle.  相似文献   

6.
We investigated phytotoxicity in seven plant species exposed to a range of concentrations (0–500 mg·kg?1 soil) of di-n-butyl phthalate (DnBP) or bis (2-ethylhexyl) phthalate (DEHP), two representative phthalate esters (PAEs) nominated by USEPA as priority pollutants and known environmental estrogens. We studied seed germination, root elongation, seedling growth, biomass (fresh weight, FW) and malondialdehyde (MDA) content of shoots and roots of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), perennial ryegrass (Lolium perenne), radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), oat (Avena sativa) and onion (Allium cepa L.), together with monitoring of plant pigment content (chlorophyll a, b and carotinoids) in alfalfa, radish and onion shoots. Root elongation, seedling growth and biomass of the test species were generally inhibited by DnBP but not by DEHP, indicating a lower level of phytotoxicity of DEHP than of DnBP. MDA contents of four species were promoted by PAE exposure, but not in alfalfa, ryegrass or onion shoots, indicating lower sensitivity of these three species to PAE pollutants. Plant pigment contents were clearly affected under the stress of both pollutants, implying the potential damage to the photosynthetic system of test plants, mainly by decreasing the content of chlorophyll a and b. Results of DnBP and DEHP phytotoxicity to the primary growth of test plants has provided information for the assessment of their environmental risk in the soil and also forms a basis for the further analysis of their toxic effects over the whole growth period of different plant species.  相似文献   

7.
Paclobutrazol (PP333) can enhance the resistance capabilities of plants to stress conditions. In this study, PP333 were sprayed on the lead (Pb) and zinc (Zn) accumulator plant Pseudostellaria maximowicziana, which was planted in Pb–Zn contaminated soil, and the effects of PP333 on Pb and Zn accumulation levels in P. maximowicziana were studied. Spraying 10?mg/L PP333 increased, while 20, 30 and 50?mg/L PP333 decreased, the biomass of P. maximowicziana compared with the control. The 10?mg/L PP333 had no significant effects on the photosynthetic pigment contents of P. maximowicziana compared with the control, while the other doses increased the contents. The activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase) and the Pb and Zn concentrations in P. maximowicziana were increased by PP333 compared with the control. These items had the increase trend with the increase of PP333 concentrations. Only 10 and 20?mg/L PP333 increased the amount of Pb extracted by P. maximowicziana shoots, while all of the doses increased the amount of Zn extracted by P. maximowicziana shoots. Thus, low concentration of PP333 could promote the growth and heavy metal extraction ability of P. maximowicziana shoots, with the 10?mg/L being the best.  相似文献   

8.

To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1–2 mm. On the PES-LDH surface, nanosized CLDH (100–150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.

  相似文献   

9.
This study employed polyphasic chlorophyll a fluorescence transients (OJIP), a non-invasive marker of environmental stress in plants, to evaluate salt tolerance in three different Juncus roemerianus age classifications (6-, 24-, and 60-months). Following exposure to elevated salts (30 psu), the younger plants sustained growth, which was comparable to freshwater controls. While older (60-month) plants receiving only freshwater also grew over the 8-week study, the older salt-treated plants did not increase in size. Similarly, there were significant declines in variable chlorophyll a fluorescence parameters (F v/F m and F v/F o), electron transport flux per reaction center (ETo/RC), and photosystem II performance index (PIABS) for 60-month J. roemerianus following salt treatment. These responses were not evident in the two younger salt-treated age classifications. Our results suggest that older J. roemerianus are less tolerant to rapid and sudden increases in salinity relative to younger plants and that this age-specific response may help explain observed discrepancies in salt tolerance in J. roemerianus.  相似文献   

10.
Hyperaccumulation of metals by plants involves at least three processes: efficient absorption by roots, efficient root-to-shoot translocation and hypertolerance through internal detoxification. In this study, Thlaspi caerulescens was separately exposed to Cd and Zn at 0, 50, 100 and 200 μ M for 7 d to monitor plant responses in hydroponics. Significant dose-dependent accumulation was observed for both metals, mainly in roots (up to 3.2 and 9.2 mg g ?1 for Cd and Zn, respectively). However, Cd was more phytotoxic in terms of plant growth and photosynthesis. This higher toxicity was also evidenced by MetPLATE bioassay. Root exudation was significantly correlated to Cd and Zn translocation (r>0.85) proving its involvement in facilitating metal uptake. As for antioxidative responses, plants reacted to Cd and Zn by broadly exhibiting an elevation of glutathione reductase activity before declining at 200 μ M due to higher phytotoxicity. By contrast, superoxide dismutase activity was unlikely to be affected by both metals. Root-to-shoot apoplastic flow was traced using a fluorescent dye (trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic acid; PTS), whose concentration in leaves increased to a certain extent with Cd and Zn accumulation, indicating that heavy metals have a comparable effect to drought or salinity in promoting the passive diffusion of water and solutes. Nevertheless, Cd at 200 μ M hindered the diffusion of PTS and consequently affected the apoplastic transport in plants.  相似文献   

11.
Heterobimetallic complexes of the type Ni[Cu(SCN)2]2 · L (where L = acetophenone benzoylhydrazone, acetophenone isonicotinoyl hydrazone, acetophenone salicyloylhydrazone (ash), acetophenone anthraniloylhydrazone, p-hydroxy acetophenone benzoylhydrazone, p-hydroxy acetophenone isonicotinoyl hydrazone p-hydroxy acetophenone salicyloylhydrazone (phash), p-hydroxy acetophenone anthraniloyl hydrazone), were synthesized and characterized. The complexes are polymeric, insoluble in common organic solvents and are nonelectrolytes. Magnetic moments and electronic spectral studies suggest a spin-free octahedral geometry for the complexes. IR spectra show the bidentate nature of all the ligands bonding through >C=O and >C=N–groups. The SCN group acts as a bridge between two metal centers. X-ray powder diffraction parameters for Ni[Cu(SCN)2]2 · ash and Ni[Cu(SCN)2]2 · phash correspond to orthorhombic and tetrahedral crystal lattices, respectively, for these complexes. The complexes show a significant antifungal activity against Rizoctonia, Stemphylium and Aspergillus sp. and antibacterial activity against Clostridium and Pseudomonas sp. The metal complexes are more active than the ligands.  相似文献   

12.
The potential translocation of heavy metals by Parthenium hysterophorus over 30 and 90 days and its effect on biomass, chlorophyll content and photosynthetic activity were studied on 0, 10, 25, 50 and 100% fly-ash-amended soil (FAS). The results showed a decrease in chlorophyll content and photosynthetic area on exposure to 50–100% FAS. Heavy metal reduction was in the order Pb>Cd>Zn>Fe>according to accumulation trends. The plant exhibited good biomass growth on exposure to 25–50% FAS, but this decreased at>100% FAS. Heavy metal concentrations in P. hysterophorus after 90 days of the experiment were in the order Fe>Zn>Cu>Pb>Cd>Ni. Parthenium hysterophorus was suitable for translocating Fe, Zn and Cu based on translocation factors (TF=1.5, 1.3 and 1.05), but was more efficient for Pb, Ni and Cd (TF=8.5, 4.3 and 3.3). Plant uptake of Pb, Ni and Cd was high, whereas translocation of Fe, Zn and Cu was poor. These results indicated that P. hysterophorus can efficiently reduce heavy metal pollution in soil.  相似文献   

13.
《毒物与环境化学》2012,94(3-6):281-299
Abstract

To investigate metal nanoparticle-induced phytotoxicity, Brassica nigra seeds were exposed to 50–1000?mg L?1 ZnO nanoparticles in culture media and 100–1000?mg kg?1 in soil. Plant length and weight were adversely affected in culture conditions, but with soil the effect was not significant. Determination of the radical-scavenging potential revealed that soil grown plants were less stressed than plants grown on culture medium. The total antioxidant and reducing power potential of soil grown plants were less variable compared to plants grown on culture medium. Total phenolic and flavonoid concentrations varied in plants, which changed with the nanoparticle’s concentrations in medium and soil. High performance liquid chromatography analysis showed that rutin was the major antioxidative molecule that significantly increased in nanoparticles-stressed B. nigra plants.  相似文献   

14.
以臭椿(Ailanthus altissima)、构树(Broussonetia papyrifera)、大叶黄杨(Buxus megistophylla)和紫穗槐(Amorpha fruticosa)4种抗污染木本植物苗木为材料,在盆栽条件下设置0、250、500、1000和2000 mg·kg^-1 5个锑的质量分数梯度,分析胁迫过程中苗木苗高、地径、生物量、耐性指数、相对叶绿素含量、POD活性和SOD活性等指标的变化,探讨这4种苗木对锑胁迫的生理响应,并通过测定苗木地上、地下部分锑的质量分数,明确这几种植物对锑的积累特征,以期为锑污染植物修复材料筛选提供理论基础。结果表明:在不同质量分数锑胁迫下,4种木本植物的苗高、地茎、生物量及耐性指数出现不同程度的下降,其中大叶黄杨在不同质量分数锑处理下的耐性指数均大于90%,表现出对锑较强的抗性。除大叶黄杨外,在中、中高质量分数(500、1000 mg·kg^-1)锑处理后,其他3种木本植物叶片叶绿素含量较对照均显著下降。而在高质量分数锑胁迫下,4种木本植物的叶绿素含量与对照相比均显著下降,表明锑能通过影响植物的光合作用来降低这4种木本植物的生物量合成。在中高质量分数锑胁迫下,4种植物根系的POD和SOD活性均呈现不同程度的增加;在高质量分数锑胁迫下,臭椿、构树和紫穗槐的POD及SOD活性增加幅度减少或受到抑制,表明抗氧化酶系统在植物抵抗锑胁迫过程中发挥重要作用,同时高质量分数的锑胁迫又能降低抗氧化酶系统清除活性氧的能力。在不同质量分数的锑胁迫下,4种木本植物地上、地下部分锑的质量分数存在差异,分别为构树>紫穗槐>臭椿>大叶黄杨,紫穗槐>构树>臭椿>大叶黄杨,表明大叶黄杨可能通过对锑较强的排斥能力,减少锑对叶绿素合成、POD和SOD活性的抑制作用,近而增强了其对锑胁迫的抗性。固氮植物紫穗槐根系最大锑?  相似文献   

15.
抗生素废水含有大量的抗生素耐药菌(antibiotic resistant bacteria,ARB)与抗性基因(antibiotic resistance genes,ARGs),处理排放后可能增强受纳环境的微生物抗性,因此有必要深入研究抗生素废水处理过程中ARB与ARGs的削减效果及其影响因素。本研究采用膜生物反应器(membrane bioreactor,MBR)工艺处理螺旋霉素制药废水,考察了不同水力停留时间(hydraulic retention time,HRT)对ARB与ARGs削减效果的影响。结果表明,虽然在HRT=30 h时MBR对COD与氨氮的去除率略高于HRT=40 h,但HRT=40 h时,不仅总异养菌与肠球菌的去除效果更佳,出水肠球菌耐药率及携带的抗性基因检出率也更低,而且MBR对废水中erm B、erm F、erm X、mef A、ere A、mph B和转移元件ISCR 1、Tn 916/1545相对丰度的削减效果更好。这表明长HRT更有利于MBR工艺削减螺旋霉素废水的耐药菌与抗性基因。  相似文献   

16.
The potential risks from oral intake of soil antimony (Sb) depends mainly on the amount of metal ingested and its bioavailability. Relative bioavailability may be determined by comparing Sb present in soil to a reference compound, taking into account accumulation in different target tissues or excretion. However, due to the lack of scientific knowledge concerning the fate of Sb in the organism, there is a need to study the absorption and distribution of Sb in order to select target tissues for assessment of bioavailability of Sb in soils. Thus, 45 piglets were exposed to a soluble pentavalent antimony salt (KSb(OH)6), for 15 days at concentrations ranging from 0–1600 µg Sb/kg body weight (BW) per day. Following the exposure period, blood, plasma, liver, spleen, kidneys, hair, bone, bile and urine were obtained to measure Sb concentrations by ICP-MS. Results showed that tissue Sb levels were dose-related. Higher Sb concentrations were found in urine, kidneys, hair, bone and liver. Sb(V) was not detectable in blood and plasma. In the case of highly contaminated soil with soluble forms of Sb in concentrations ranging from 200–1600 µg Sb/kg BW, kidneys, liver and spleen are the most reliable compartments to determine Sb bioavailability from soil. However, for the soils with lower levels of contamination and a low Sb bioaccessibility, urine may serve as a relevant compartment.  相似文献   

17.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

18.
Heavy metal pollution in soil and wastewater is a worldwide environmental issue in which microorganisms play a significant role for its removal. In the present study, biosorption of Cr(VI) by the live and dead cells of Kocuria sp. ASB107, a radio-resistant bacterium, was investigated. The effect of contact time, solution pH, initial hexavalent chromium concentration and adsorbent dose on biosorption efficiency was studied. Also, live cells were further immobilised on various matrices by different techniques and then were examined for tolerance to chromium biosorption. Experimental results indicated that the removal efficiency of chromium increased with decrease in pH, initial Cr(VI) concentration, and also increase in adsorbent dose and the contact time. The maximum removal efficiency of live and dead cells at acidic pH of 4–4.5, contact time of 24 hours, adsorbent dose 1.6?g/100?mL and initial chromium concentration 25?mg/L were 82.4% and 69.2%, respectively. The adsorption data was described well by Langmuir isotherm model. Among all immobilisation techniques tested, cross-linking showed the highest biosorption of Cr(VI). Results indicated that live cells of Kocuria sp. ASB107 were better than dead ones.  相似文献   

19.
Nickel (Ni) and copper (Cu) are the most prevalent metals found in the Greater Sudbury Region ecosystems. The main objectives of this study are to (1) assess silver maple (Acer saccharinum) tolerance to different doses of Ni and (2) determine the translocation pattern of metals in A. sacharinum. This study revealed that A. sacharinum is highly tolerant to high doses of NI (1600 and 9200?mg/kg). Growth chamber screening trials revealed that Ni is stored in roots and does not translocate to other plant parts. Analysis of samples from A. sacharinum growing for >30 years in soil contaminated with metals also showed that the levels of iron (Fe), manganese (Mn), Ni, and zinc (Zn) were significantly higher in roots compared with soils and aerial parts. On the other hand, the amount of Cu was higher in soil compared with roots and other plant parts. In fact, the bioaccumulation factors (BFs) were 0.29, 2.00, 3.6, 1.9, and 4.0 for Cu, Fe, Mn, Ni, and Zn, respectively. The translocation from roots to aerial parts showed an insignificant level of movement of Cu, Fe, and Ni. Hence, A. saccharinum is classified as excluder for Fe, Mn, Ni, and Zn, and avoider for Cu.  相似文献   

20.
The main solid waste product from coal-fired power stations is pulverised fuel ash (PFA), which can be enriched in toxic elements. Disposal of PFA by dry (in landfills) or wet (by slurrying) disposal methods can release these elements into the environment. Thereafter, the contaminants can be taken up by biota such as Eichhornia crassipes, a common aquatic plant, which has the ability to accumulate elements from water. This study investigates the uptake of Cd, Cu, Ni and Zn by E. crassipes grown in leachates and slurries prepared from two different PFA samples. PFA samples were obtained from Indraprastha Power Station (IPP Stn.) in New Delhi, India and the Ratcliffe-on-Soar Power Station in the UK. E. crassipes grown in PFA leachates and slurries at 1:5 and 1:50 solid:liquid (PFA:deionised water) ratios show that the plant has a very high accumulation capacity for Cd, Cu, Ni and Zn from both leachates and slurries and the uptake of these metals is stronger in the roots than in the tops of the plant. Metal accumulation, as shown by the accumulation factor (AF) values, is higher from both leachates and slurries for plants grown in the 1:50 (PFA:DIW) ratios than in the 1:5 ratios, initial metal concentrations being higher in the 1:5 ratios than in the 1:50 ratios. Lower metal accumulation in the plants grown in slurries than in leachates is related to the high turbidity of growth medium in slurries resulting in ash particles adhering to the root surfaces thus reducing the surface area of metal absorption. Eichhornia plants are able to reduce the pH of all leachates, especially the highly alkaline Ratcliffe leachates to near neutral conditions. Accumulation of Cd and Zn by the plant is higher from the lower pH IPP leachates than the Ratcliffe leachates, indicating that these metals are more soluble and bioavailable in the acidic medium. However, accumulation of Cu and Ni is independent of the pH of the leachates, indicating that other factors, such as metal species, presence of complexing agents in the growth solutions, and effects of competing metal ions may be contributory factors towards the metal uptake and accumulation by the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号