共查询到7条相似文献,搜索用时 15 毫秒
1.
Balvinder Singh Navish Kataria Poonam Yadav Nawal Kishore Vandana Pulhani 《毒物与环境化学》2013,95(10):1571-1580
Uranium is a naturally occurring radioactive element which may cause toxicological or radiological hazards to the public if present in drinking water. This study reports the quantification of uranium in groundwater of major towns of the district Fatehabad, Haryana, India. Uranium concentrations ranged between 0.3 and 48 μg L?1. In 22% of the groundwater samples, uranium concentrations were higher than the World Health Organization maximum permissible limit of 30 µg L?1. The radiological dose for males was found to be in the range of 4.8?×?10?4–7.1?×?10?2 mSv y?1 and for females 3.5?×?10?4–5.2?×?10?2 mSv y?1. The results showed that due to the ingestion of groundwater in the study area, radiological cancer risk is in the range of 9.1?×?10?7–1.3?×?10?4, lower than the risk limit. Uranium ingestion from groundwater varied from 0.02 to 3.5 µg kg?1 day?1, which is within acceptable limit. 相似文献
2.
Akhilesh Kumar Yadav Sunil Kumar Sahoo Swagatika Mahapatra A. Vinod Kumar Govind Pandey Pradyumna Lenka 《毒物与环境化学》2013,95(2):192-200
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1. 相似文献
3.
Fluoride contamination in groundwater of central Rajasthan,India and its toxicity in rural habitants
This study was carried out to assess fluoride (Fl) concentration in groundwater in some villages of central Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected from deep aquifer-based hand pumps were analyzed for Fl content. Fluoride in groundwater of 121 habitations of Bhilwara tehsil of Bhilwara district of Rajasthan was determined to examine the potential Fl-induced toxicity in rural locations. Fluoride concentrations in the tehsil ranged from 0.5 to 5.8 mg/l. In the tehsil, 69 villages (57%) were found to have Fl concentration beyond the maximum desirable limit recommended in Bureau of Indian Standards (BIS), 10500, 1991. Fifty-eight percent population of these villages was under the threat of fluorosis. One percent population of tehsil living in two villages ingested more than 5 mg/l Fl in each liter of drinking water and at maximal risk for dental and skeletal fluorosis. 142 individuals of these villages were examined for fluorosis. Data indicated that only four individuals (2.82%) did not exhibit dental fluorosis. Most individuals were found to suffer from mild (34.51% or 49 individuals) and moderate (31.69% or 45 individuals) fluorosis. Severe dental fluorosis was recorded in only 16 individuals (11.27%). In 104 individuals above 21 years of age examined for the prevalence of skeletal fluorosis, 66 were positive for skeletal fluorosis with a maximum 36.5% with grade I skeletal fluorosis. Grade II skeletal fluorosis was recorded in 28 individuals (26.9%). Data in this study demonstrate that there is a need to take ameliorative steps in this region to prevent fluorosis. 相似文献
4.
Xiaolong WANG Shiming DING Qi ZHANG Weiping HU 《Frontiers of Environmental Science & Engineering》2015,9(4):665
As the second largest freshwater lake in China, Taihu Lake provides water supply to approximately 32 million inhabitants around the lake. However, dramatically increased pollution has threatened the safety of drinking water supply in recent years. In the present study, we investigated the contaminations of nutrients and heavy metals in the sediments of an intake and inflow canals in Gonghu Bay, Taihu Lake. Moreover, we also examined the impact of human activities on spatial distribution characteristics of contaminations. Our results showed that the intake presented relatively lower concentrations of phosphorus and nitrogen compared with inflow canals. However, the concentrations of Cr, Ni, Cu, Zn and Pb in the sediments of the intake exceeded the lowest effect level (LEL) values, indicating a potential risk to drinking water resource. In addition, the concentrations of Ni in the sediments of Tianji Canal and Jinshu Canal exceeded the severe effect level (SEL) value. More importantly, the concentrations of Cu in the sediments of Tianji Canal exceeded three times of the SEL value. Multivariate statistical analysis confirmed that the domestic sewage primarily contributed to the nutrient accumulation, and the leakage of electronic trash dominated the enrichment of metals in the sediments. Taken together, more effort should be made to ensure the security of water resources in Taihu Lake, especially for the treatment of domestic sewage and industrial wastewater. 相似文献
5.
Distribution and Risk Assessment of Fluoride in Drinking Water in the West Plain Region of Jilin Province, China 总被引:3,自引:0,他引:3
Bo Z Mei H Yongsheng Z Xueyu L Xuelin Z Jun D 《Environmental geochemistry and health》2003,25(4):421-431
The west plain region of Jilin province of northeast China is one of the typical endemic fluorosis areas caused by drinking water for many years. Investigations of hydrogeological and ecoenvironmental conditions as well as endemic fluorosis were conducted in 1998. Results show that the ground water, especially, the water in the unconfined aquifer is the main source of drinking water for local residents. The fluoride concentration in groundwater in the unconfined aquifers is higher than that in the confined aquifer in the west plain of Jilin province. The fluoride concentration in the unconfined aquifer can be used to classify the plain into fluoride deficient area, optimum area and excess area, which trend from west to east. High fluoride (>1.0 mg L(-1)) in drinking water resulted in dental and skeletal fluorosis in local residents (children and pregnant women). There exists a positive correlation between fluoride concentration in the drinking water and the morbidities of endemic fluorosis disease (r1 = 0.781, r2 = 0.872). Health risks associated with fluoride concentration in drinking water are assessed. It has been determined that fluoride concentration in excess of 1.0 mg L(-1) exposes residents to high health risks based on risk identification. The study area is classified into five health risk classes as shown in Figure 4. The risk indexes of this area more than 1.0 are accounted for 68% of the total west plain region. 相似文献
6.
曹妃甸和黄骅港是河北省近海工业布局和港口分布较密集的区域,对其近岸海域海水水质进行监测具有重要意义。2014年9月采集研究区近岸海域表层海水,并利用GC-MS对其中16种优先控制PAHs进行测定。结果表明,曹妃甸和黄骅港近岸海域表层海水中∑PAHs含量分别为52.6~192.1 ng·L~(-1)和85.4~156 ng·L~(-1),平均含量分别为74.59 ng·L~(-1)和121.45 ng·L~(-1)。黄骅港近岸海域∑PAHs含量高于曹妃甸近岸海域的含量,但PAHs的种类没有差异。对比其他研究区域水体中PAHs的含量,本区域表层海水中PAHs的含量处于中等水平,属于轻污染。异构体比值结合该区域现状分析初步判断,研究区表层海水中PAHs来源于石油污染和煤、生物质等的燃烧。应用风险商值法(RQ)对研究区域表层海水中PAHs的生态风险进行评价,结果表明该海域存在低生态风险,需采取措施控制PAHs的污染。 相似文献
7.
Linsheng Yang Peter J. Peterson W. Peter Williams Wuyi Wang Shaofan Hou Jian’an Tan 《Environmental geochemistry and health》2002,24(4):293-303
Associations between the concentration of arsenic naturally occurring in drinking water and the development of skin lesions in people have been documented for some years at various locations around the world. Data on the exposure-response relationship between concentrations of arsenic in drinking water and prevalence of skin lesions in farmers from five locations in Inner Mongolia, China have been collected from the original publications and re-analysed together as a meta-study. The calculated data show a positive linear exposure-response relationship without a threshold. The reasons for this linear correlation are discussed and compared with the data from Xinjiang, another arsenism area located in a different geographical area of China. Here a different relationship was recorded that involved a threshold concentration before skin lesions developed. The significance of these two different exposure-response scenarios is discussed. 相似文献