首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranium is a naturally occurring radioactive element which may cause toxicological or radiological hazards to the public if present in drinking water. This study reports the quantification of uranium in groundwater of major towns of the district Fatehabad, Haryana, India. Uranium concentrations ranged between 0.3 and 48 μg L?1. In 22% of the groundwater samples, uranium concentrations were higher than the World Health Organization maximum permissible limit of 30 µg L?1. The radiological dose for males was found to be in the range of 4.8?×?10?4–7.1?×?10?2 mSv y?1 and for females 3.5?×?10?4–5.2?×?10?2 mSv y?1. The results showed that due to the ingestion of groundwater in the study area, radiological cancer risk is in the range of 9.1?×?10?7–1.3?×?10?4, lower than the risk limit. Uranium ingestion from groundwater varied from 0.02 to 3.5 µg kg?1 day?1, which is within acceptable limit.  相似文献   

2.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   

3.
Based on the available toxicity data and the concentrations of DDTs and HCHs in surface water from the upper reaches of the Huaihe River, overlapping areas of probability density and margin of safety (MOS10) were used to estimate the risk levels of DDTs and HCHs to aquatic organisms. The overlapping areas of α-HCH, γ-HCH, p,p′-DDE, p,p′-DDD, and p,p′-DDT were found to be 9.3 × 10?5, 4.6 × 10?3, 4.3 × 10?2, 2.2 × 10?2, and 4.2 × 10?2, respectively. The risks from DDTs were higher than those from HCHs, the risk from α-HCH being the smallest. The MOS10 values of α-HCH, γ-HCH, p,p′-DDE, p,p′-DDD, and p,p′-DDT were 2.6 × 103, 97, 5.9, 15, and 8.6, respectively, i.e. greater than 1.0, indicating limited overlaps between the distributions of exposure concentrations and of toxicity data, and thus minimal ecological risk. Health risk calculations based on incremental lifetime risks for HCHs and DDTs were conducted to evaluate human cancer risk and non-carcinogenic hazard. The total cancer risks from organochlorine pesticides (OCPs) in the studied area were in the range of 10?8–10?7, lower than the baseline value of acceptable risk (10?6). Non-carcinogenic hazard indices of OCPs ranging from 10?6 to 10?5 were much lower than the threshold values (1.0). These results suggest that the water from the upper reaches of the Huaihe River does not pose any health risk for local residents using river water as a source for drinking water.  相似文献   

4.
The objectives of the study are to present a critical review of the 238U, 234U, 235U, 226Ra and 210Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing 238U and 234U. The water quality data were taken from Sect. “Data analysis” of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah–Navajo Lands 1994–2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410–1 Bq/L) in 19 % of the water samples, while 238U and 234U concentrations were above in 14 and 17 % of the water samples, respectively. 226Ra and 210Pb concentrations in water samples were in the range of 3.7 × 10?1 to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the 226Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the 210Pb/226Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the 235U/totalU mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of 235U to totalU (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations in the majority of the water samples, indicating more than one source of contamination could contribute to the sampled sources. The effective doses due to ingestion of the minimum uranium concentrations in water samples exceed the average dose considering inhalation and ingestion of regular diet for other populations around the world (1 μSv/year). The maximum doses due to ingestion of 238U or 234U were above the international limit for effective dose for members of the public (1 mSv/year), except for inhabitants of two chapters. The highest effective dose was estimated for inhabitants of Cove, and it was almost 20 times the international limit for members of the public. These results indicate that ingestion of water from some of the sampled sources poses health risks.  相似文献   

5.
A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites—Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g?1 dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10?6–2.11 × 10?5 and 9.08 × 10?6–4.50 × 10?3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.  相似文献   

6.
Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10?8 to 6.74 × 10?8 mol L?1 s?1, and the ·OH formation rate ranges from 1.7 × 10?11 to 3.06 × 10?10 mol L?1 s?1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater.  相似文献   

7.
Mining activities are among the major culprits of the wide occurrences of soil and water pollution by PAHs in coal district, which have resulted in ecological fragilities and health risk for local residents. Sixteen PAHs in multimedia environment from the Heshan coal district of Guangxi, South China, were measured, aiming to investigate the contamination level, distribution and possible sources and to estimate the potential health risks of PAHs. The average concentrations of 16 PAHs in the coal, coal gangue, soil, surface water and groundwater were 5114.56, 4551.10, 1280.12 ng g?1, 426.98 and 381.20 ng L?1, respectively. Additionally, higher soil and water PAH concentrations were detected in the vicinities of coal or coal gangue dump. Composition analysis, isomeric ratio, Pearson correlation analysis and principal component analysis were performed to diagnose the potential sources of PAHs in different environmental matrices, suggesting the dominant inputs of PAHs from coal/coal combustion and coal gangue in the soil and water. Soil and water guidelines and the incremental lifetime risk (ICLR) were used to assess the health risk, showing that soil and water were heavily contaminated by PAHs, and mean ICLRcoal/coal-gangue and mean ICLRsoil were both significantly higher than the acceptable levels (1 × 10?4), posing high potential carcinogenic risk to residents, especially coal workers. This study highlights the environmental pollution problems and public health concerns of coal mining, particularly the potential occupational health hazards of coal miners exposed in Heshan.  相似文献   

8.
A systematic survey of organochlorine pesticides (OCPs) including hexachlorocyclohexane isomers (α-HCH, β-HCH, γ-HCH, δ-HCH and ΣHCH) and dichlorodiphenyltrichloroethane metabolites (p,p′-DDT, p,p′-DDE, o,p′-DDT, p,p′-DDD and ∑DDT) in soils along the north coastal areas of the Bohai Sea, China, has been lacking. In this study, 31 representative surface soil samples were collected along the north coastal and riverine areas of the Bohai Sea to characterise the potential for adverse effects of ∑HCH, ∑DDT and their individual isomers and transformation products. Concentrations of ΣHCH and ΣDDT in soils ranged from less than the limit of detection (1 ng · g?1 dw (mean: 3.5 ng · g?1 dw) and2 ng · g?1 dw (mean: 1.7 × 101 ng · g?1 dw), respectively. Compared with studies of OCPs in soils from other locations, concentrations of HCHs and DDTs observed in this study were moderate. Concentrations of OCPs observed in soils were generally less than proposed reference values. HCH residues were a mixture of historical technical HCH and current lindane sources. The pattern of DDTs was consistent with historical releases of technical DDTs. Selected soil physicochemical properties did not explain the sorption and/or partitioning of HCHs or DDTs.  相似文献   

9.
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69–1.5 × 102 ng L?1 and 2.3 × 103–8.6 × 104 ng g?1, respectively. The levels of Σ20OCPs were 23–66 ng L?1 (dissolved phase) and 19–1.7 × 103 ng g?1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.  相似文献   

10.
In the present study, the tube well water quality and the associated health risks, emphasizing on arsenic contamination, were investigated in rural and urban samples from Tehsil Mailsi located in Punjab, Pakistan. Arsenic concentrations (μg/L) were ranged from 12 to 448.5 and which exceeded the WHO recommended limit (10 μg/L) in all cases. The calculated average daily dose (3.3 × 10?0.4 to 1.2 × 10?0.2 mg/kg day) and hazard quotient (1.1–40) reflected the potential health risk to local population due to tube well water consumption as drinking purpose. Sodium percent (Na%), sodium absorption ratio, residual sodium carbonate, Kelly’s index and magnesium absorption ratio were also determined to assess the suitability of tube well water for irrigation purpose. The resulting piper plot revealed the Na–Ca–HCO3 type water chemistry of the area and generally alkaline environment. The spatial distribution of arsenic in the tube well waters pinpoints the significant contribution of anthropogenic activities to arsenic pollution. Nevertheless, different statistical tools, including principal component analysis, hierarchical cluster analysis and correlation matrices, revealed the contribution of both natural and anthropogenic activities and alkaline type of aquifers toward the high level of arsenic contamination.  相似文献   

11.
于2012—2013年6月和12月采集了内蒙古呼和浩特市大气颗粒物样品,用GC-MS分析测定其中16种PAHs的浓度,并用苯并(a)芘(Ba P)致癌、致突变等效浓度、终身致癌超额危险度和预期寿命损失3个指标评价了内蒙古呼和浩特市大气颗粒物TSP和PM_(10)中PAHs的人群健康风险。结果显示:内蒙古呼和浩特市大气颗粒物TSP和PM_(10)中PAHs对成人、儿童的日均暴露剂量范围分别为0.71×10~(-6)~2.01×10~(-6)、0.45×10~(-6)~1.28×10~(-6)和0.31×10~(-6)~2.41×10~(-6)、0.19×10~(-6)~1.15×10~(-6)mg·kg~(-1)·d~(-1);TSP和PM_(10)中PAHs对成人和儿童的终身致癌超额危险度范围分别为2.21×10~(-6)~6.24×10~(-6)、1.41×10~(-6)~3.97×10~(-6)和0.95×10~(-6)~7.47×10~(-6)、0.60×10~(-6)~4.75×10~(-6),终身致癌超额危险度均处于可接受水平范围内(10-4~10~(-6))。TSP和PM_(10)中PAHs对成人和儿童的预期寿命损失范围分别为13.74~38.78、8.752~24.70和5.88~46.39、3.74~29.54 min。  相似文献   

12.
Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3? + CO32?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO42? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3? + CO32?, Na+ versus Ca2+, and Na+: Cl? versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3?, CO32?, SO42?, and F? ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl? ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl?, SO42?, and NO3? ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3? + CO32? > Cl? > SO42? > NO3? > F? and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3? above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.  相似文献   

13.
Most local people in the agricultural areas of Hua-ruea sub-district, Ubon Ratchathani province (Thailand), generally consume shallow groundwater from farm wells. This study aimed to assess the health risk related to heavy metal contamination in that groundwater. Samples were randomly collected from 12 wells twice in each of the rainy and the dry seasons and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). The concentration of detected metals in each well and the overall mean were below the acceptable groundwater standard limits for As, Cd, Cr, Cu, Hg, Ni and Zn, but Pb levels were higher in four wells with an overall average Pb concentration of 16.66 ± 18.52 μg/l. Exposure questionnaires, completed by face-to-face interviews with 100 local people who drink groundwater from farm wells, were used to evaluate the hazard quotients (HQs) and hazard indices (HIs). The HQs for non-carcinogenic risk for As, Cu, Zn and Pb, with a range of 0.004–2.901, 0.053–54.818, 0.003–6.399 and 0.007–26.80, respectively, and the HI values (range from 0.10 to 88.21) exceeded acceptable limits in 58 % of the wells. The HI results were higher than one for groundwater wells located in intensively cultivated chili fields. The highest cancer risk found was 2.6 × 10?6 for As in well no. 11. This study suggested that people living in warmer climates are more susceptible to and at greater risk of groundwater contamination because of their increased daily drinking water intake. This may lead to an increased number of cases of non-carcinogenic and carcinogenic health defects among local people exposed to heavy metals by drinking the groundwater.  相似文献   

14.
Sea water and fish tissue samples were collected from nine sampling stations from the Great Bitter and El Temsah lakes in the Suez Canal and analysed for polycyclic aromatic hydrocarbon (PAH). The compositions of PAH determined in the dissolved fraction of sea water were measured in order to use them as chemical markers for identifying different sources of PAH pollution in this region. PAHs determined in fish tissues were measured for comparison with human health standards as consumption. The total mean PAHs concentrations in the sea water samples ranged from 0.28 to 39.57 μg l?1 with an overall mean of 10.78 and 12.38 μg l?1 for El Temsah and Bitter Lakes water, respectively. Total PAHs fractions recorded in muscle tissues of all different Osteicthyes fishes collected from Great Bitter lakes ranged from 5.8 to 218.5 μg g?1 with an overall mean of 57.98 μg g?1 during all seasons. However, they ranged from 68 to 623 μg g?1 with an overall mean of 87.69 μg g?1 recorded in El Temsah lake during four seasons (2003–2004). Benzo(a)pyrene was the most dominant PAHs found in the sea water samples from both lakes with an average concentration of 3.8 μ g l?1. Dibenzo(a,h)anthracene (DBA) was the most dominant PAHs recorded in fish samples. A maximum of 533 μg g?1 of DBA was recorded in Dahbana sp. collected from Bitter lakes during January 2004. However, a maximum of 68.7 μ g g?1 was recorded in Liza carinata species collected from El Temsah lake during July, 2004. The simultaneous occurrence of isomer ratios PHE/ANT<10 for all stations indicated that the major PAH input to water was from combustion of fossil fuel (pyrolytic source). The average ratios were 1.21 and 12.9 during winter (January 2004) and 4.3 and 8.63 during spring (April 2004) for all water samples of Great Bitter lakes and El Temsah lake, respectively. In addition, the present data demonstrate that PAHs from fossil fuel sources (MW<178) were the least significant source of PAHs in this region.  相似文献   

15.
The contamination characteristics of arsenic and other trace elements in groundwater and the potential risks of arsenic from the groundwater were investigated. Elevated contamination of arsenic, barium and manganese was observed in tube-well water of two villages (Chuyen Ngoai and Chau Giang) in Ha Nam province in the Northern Vietnam. Concentrations of As in the groundwater ranged from 12.8 to 884 µg/L with mean values in Chuyen Ngoai and Chau Giang were 614.7 and 160.1 µg/L, respectively. About 83 % of these samples contained As concentrations exceeding WHO drinking water guideline of 10 μg/L. The mean values of Mn and Ba in groundwater from Chuyen Ngoai and Chau Giang were 300 and 657 μg/L and 650 and 468 μg/L, respectively. The mean value of Ba concentration in groundwater in both Chuyen Ngoai and Chau Giang was about 22 % of the samples exceeded the WHO guideline (700 µg/L). Arsenic concentrations in human urine of residents from Chuyen Ngoai and Chau Giang were the range from 8.6 to 458 µg/L. The mean values of Mn and Ba in human urine of local people from Chuyen Ngoai were 46.9 and 62.8 μg/L, respectively, while those in people from Chau Giang were 25.9 and 45.9 μg/L, respectively. The average daily dose from ingesting arsenic for consuming both untreated and treated groundwater is from 0.02 to 11.5 and 0.003 to 1.6 μg/kg day, respectively. Approximately, 57 % of the families using treated groundwater and 64 % of the families using untreated groundwater could be affected by elevated arsenic exposure.  相似文献   

16.
The main objective of this study is to assess the health hazard due to the indoor radon. Measurement studies have been carried out in 56 dwellings belonging to 14 residential areas in Alexandria city, Egypt. Results are obtained using the LR-115 (Type II) alpha track detector in “closed-can” geometry. The dosimeters were installed in bedroom, living room, and the kitchens of each house. For intercomparison purpose, dosimeters are installed in basements, ground floor, and first floor. Measured indoor radon concentrations were found to vary from 15 to 132 Bq m?3. The average radon concentrations in living room, bedrooms, and kitchen in basements were found to vary from to be 39 ± 10, 63 ± 15 and 81 ± 25 Bq m?3, respectively. In living room, bedrooms, and kitchen, on ground floor, the average radon concentrations were found to be 35 ± 9, 44 ± 6 and 56 ± 10 Bq m?3, whereas on first floor, the average values are 29 ± 8, 34 ± 7 and 45 ± 8 Bq m?3, respectively. The overall mean radon concentration in all surveyed districts has been found to be 44 ± 16 Bq m?3. The mean annual estimated effective dose received by the residents of the studied area is estimated to be 0.75 mSv. The obtained results are compared with the indoor radon levels prescribed by the International Commission on Radiation Protection and are found to be less than the action level recommended.  相似文献   

17.
In Tunisia, the water resources are limited, partially renewable and unequally distributed between the wet north and the dry south of the country. The Sminja aquifer in Zaghouan city is located in north-east of Tunisia, between latitudes 36°38′ and 36°47′ and longitudes 9°95′ and 10°12′. This aquifer is used to satisfy the population needs for their domestic purposes and agricultural activities. Water analyses results are expressed by many methods, among which are geochemical methods combined with the geographic information system (GIS) (all schematic presentations of the diagram software (Piper, Riverside, Wilcox…), which can be used to assess the suitability of the Sminja aquifer groundwater for human consumption and irrigation purposes. A total of 23 wells were sampled in January 2013, and the concentrations of major cations (Na+, Ca2+, Mg2+ and K+), major anions (Cl?, SO4 2? and HCO3 ?), electrical conductivity and total dissolved solids were analysed. In the Sminja groundwater, the order of the cations dominance was Na > Ca > Mg > K and that of the anions was Cl > HCO3 > SO4. All of the analysed samples of the study area exceed chemical values recommended by the World Health Organisation guidelines and Tunisian Standards (NT.09.14) for potability but with different percentages. The aquifer spatial distribution of saturation indices reveals that all groundwater samples are under-saturated with gypsum, halite and anhydrite and are over-saturated with respect to calcite and dolomite based on water quality evaluation parameters for irrigation purposes; here, 87 % of samples in Sminja aquifer groundwater are suitable, whereas 13 % are unsuitable for irrigation uses.  相似文献   

18.
城市回用水中多环芳烃致癌风险评价   总被引:1,自引:0,他引:1  
为评价人群暴露于城市回用水中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)对于人体健康的潜在风险,采用气相色谱-质谱(GC-MS)联用的分析化学方法对不同季节回用水中16种PAHs进行定量分析;在此基础上采用美国国家科学院和国家研究委员会提出的环境健康风险评价方法,分析不同回用条件下具有中国水体基质特色的城市回用水中PAHs健康风险.结果显示,回用水样中16种PAHs的总浓度为1 422.85 ng·L-1,污水处理厂二级出水水样16种PAHs的总浓度为1 791.77 ng ·L-1,经过处理后回用水中PAHs含量有所降低.风险评价分析结果显示,回用水在城市绿化、农业灌溉和景观娱乐3种不同回用途径下多环芳烃的致癌风险分别为788×10-8、2.77×10-6、3.04×10-6,总致癌风险为5.89×10-6.以上结果可以得出,回用水在城市绿化、农田灌溉和景观娱乐接触过程中多环芳烃所增加的致癌风险很低,回用水中多环芳烃的健康风险处于可接受水平.  相似文献   

19.
Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l?1) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3) 2 2? ] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.  相似文献   

20.
Xijiang River is an important drinking water source in Guangxi Province, China. Along the Xijiang River and surrounding tributary, the pollution profile of three important groups of semi-volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), was analyzed. Relatively low levels of PAHs (64–3.7 × 102 ng L?1) and OCPs (16–70 ng L?1), but high levels of PAEs (7.9 × 102–6.8 × 103 ng L?1) occurred in the water. Comparatively, low levels of OCPs (39–1.8 × 102 ng g?1) and PAEs (21–81 ng g?1), but high levels of PAHs (41–1.1 × 103 ng g?1) were found in sediment. Principal component analyses for source identification indicated petroleum-derived residues or coal and biomass combustion, and vehicular emission was the main sources for PAHs. The OCPs sources of each category were almost independent, whereas the new input of HCHs and p,p′-DDTs probably existed in some areas. PAEs were mainly originated from personal care products of urban sewage, plastic and other industrial sources. Ecological risk through the risk quotient analysis indicated a small or significant potential adverse effect on fish, daphnia and green algae. Nevertheless, the integrated risk of all pollutants should be taken into account in future study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号