首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate-N and Fluoride concentrations were analyzed in shallow and unconfined ground water aquifers of Kanpur district along the Ganges Alluvial Plain of Northern India. Kanpur district was divided into three zones namely, Bithore, Kanpur City and Beyond Jajmau and sampling was carried out three seasons (summer, monsoon and winter). The data set consisted of the results of water samples from around 99 India Mark II hand Pumps, which were analyzed for summer monsoon and winter seasons. In Bithore zone, 19% of the samples exceeded the BIS (Bureau of India Standards) limit 10.2 mg/l as nitrate-N and as high as 166 mg/l as nitrate-N was observed. 10% and 7% samples in Kanpur city and beyond Jajmau zone respectively, exceeded the BIS limit. The Frequency distribution histogram of nitrate-N revealed a skewed (non-normal) distribution. Both point and non-point sources contribute to the ground water contamination. Especially in Bithore zone, the point sources could be attributed to the animal wastes derived from cows and buffaloes and non point sources could be due to the extensive agricultural activity prevalent in that area. Fluoride concentration in most samples was within the BIS maximum permissible level of 1.5 mg/l. No significant seasonal variation in water quality parameters was observed.  相似文献   

2.
Arsenic in the soil and water of eastern districts of Uttar Pradesh (Ballia and Ghazipur) was estimated. Survey results revealed that arsenic in soil samples ranged from 5.40 to 15.43 parts per million (ppm). In water samples, it ranged from 43.75 to 620.75 parts per billion (ppb) which far exceeded the permissible limit of 10 ppb as recommended by the World Health Organization. Maximum concentration of arsenic in water was found in Haldi village of Ballia (620.75 ppb). However, mean arsenic concentration in water followed the order: Karkatpur (257.21 ppb) < Haldi (310.15 ppb) < Sohaon (346.94 ppb) < Dharmarpur (401.75 ppb). In case of soil, maximum arsenic was detected in soil of Sohaon (15.43 ppm). Mean arsenic levels in soils followed the order: Karkatpur (9.24 ppm) < Haldi (9.82 ppm) < Dharmarpur (11.32 ppm) < Sohaon (14.08 ppm). Arsenic levels were higher in soils collected from 15–30 cm depth than 0–15 cm from the soil surface.  相似文献   

3.
The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority of groundwater samples can be considered suitable for irrigation purposes.  相似文献   

4.
The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na > Ca > Mg > K and HCO3 > Cl > SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium?Cbicarbonate type. The HCO3/ (HCO3 + SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45?mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.  相似文献   

5.
Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.  相似文献   

6.
Excess intake of fluoride through drinking water causes fluorosis on human beings in many States of the country (India), including Andhra Pradesh. Groundwater quality in the Varaha River Basin located in the Visakhapatnam District of Andhra Pradesh has been studied, with reference to fluoride content, for its possible sources for implementing appropriate management measures, according to the controlling mechanism of fluoride concentration in the groundwater. The area occupied by the river basin is underlain by the Precambrian Eastern Ghats, over which the Recent sediments occur. Results of the chemical data of the groundwater suggest that the considerable number of groundwater samples show fluoride content greater than that of the safe limit prescribed for drinking purpose. Statistical analysis shows that the fluoride has a good positive relation, with pH and bicarbonate. This indicates an alkaline environment, as a dominant controlling mechanism for leaching of fluoride from the source material. Other supplementary factors responsible for the occurrence of fluoride in the groundwater are evapotranspiration, long contact time of water with the aquifer material, and agricultural fertilizers. A lack of correlation between fluoride and chloride, and a high positive correlation between fluoride and bicarbonate indicate recharge of the aquifer by the river water. However, the higher concentration of fluoride observed in the groundwater in some locations indicates insufficient dilution by the river water. That means the natural dilution did not perform more effectively. Hence, the study emphasizes the need for surface water management structures, with people's participation, for getting more effective results.  相似文献   

7.
8.
Total arsenic in four different growth forms of lichens growing on old monuments in the city of Mandav, Dhar district of Madhya Pradesh, India was analyzed. Among the different growth forms, foliose lichens were found to accumulate higher amounts of arsenic followed by leprose form. The squamulose and crustose form accumulates the lower concentration of arsenic and ranged between 0.46 ± 0.03 and 20.99 ± 0.58 μg g???1 dry weight, while the foliose and leprose lichens have ranges from 10.98–51.95 and 28.63–51.20 μg g???1 dry weight, respectively. The substrate having high arsenic ranges also exhibit higher ranges of arsenic on lichens growing on them. The cyanolichens exhibit higher concentration of arsenic than the green photobiont-containing squamulose form. The higher concentration of arsenic was found at site having past mining activities. LSD (1%) shows significant difference for As concentration in lichens thallus between the selected sites and species both.  相似文献   

9.
Groundwater chemistry has been studied to examine the associated hydrogeochemical processes operating for the development of salinity in the groundwater in parts of Guntur district, Andhra Pradesh, India. The study area is underlain by charnockites and granitic gneisses associated with schists of the Precambrian Eastern Ghats. Groundwater is the main resource for irrigation besides drinking. Chemical parameters, pH, EC, TDS, Ca2+, Mg2+, Na+, K+, , , Cl, , , F and SiO2, are taken into account. Groundwater is of brackish type. Na+−Cl facies dominates the groundwater. Examination of compositional relations and mineral saturation states shows that the ion exchange of Ca2+ for adsorbed Na+, evapotranspiration, dissolution of soil salts, dissolution of NaCl and CaSO4, and precipitation of CaCO3 are the dominant hydrogeochemical processes associated with the groundwater composition in the area. Evapotranspiration causes accumulation of salts in the soil/weathered zone. These salts reach the water table by leaching through infiltrating recharge water. A positive relation between depth to water table and TDS with season supports this inference. The effects of human activities, such as intensive and long-term irrigation, irrigation-return-flow, application of unlimited agricultural fertilizers and recycling of saline groundwater, act to further increase the salinity in the groundwater. Therefore, the groundwater quality increases towards the flow path, while the post-monsoon groundwater shows higher concentrations of TDS, Na+, Mg2+, Cl, , , F and SiO2 ions. The study could help to understand the hydrogeochemical characteristics of the aquifer system for taking effective management measures to mitigate the inferior groundwater quality for sustainable development.  相似文献   

10.
The study area Rameswaram, a holy island, is famous for the sacred Ramanathaswamy temple, which cements people of the country regardless of their place, residence, or their religion or creed. This coastal tract is experiencing a chronic fresh water shortage, despite a few spring sources. The study area is selected for the characterization of physico-chemical parameters viz., pH, EC, TDS, salinity, TA, TH, CH, MH, chloride, and fluoride for 150 groundwater samples and the impact of pre- and post-monsoons on the groundwater quality is studied. The water quality index advocates the transfer of groundwater quality from unacceptable status in the pre-monsoon into an acceptable status in the post-monsoon. The Langelier saturation index reflects the scaling tendency of groundwater in the study area. The Karl Pearson correlation matrix has approved the maximum influence of calcium and chloride on the total dissolved solids. It is interesting to conclude that the groundwater in the study area has very had nature, especially of non-carbonate type.  相似文献   

11.
The groundwater quality assessment for the drinking and irrigation purpose is carried out in the Kandivalasa River Sub Basin covered with khondalitic suite (Garneti ferrous, Sillimanite, Gneiss) of rocks, near Cheepurupalli town of Vizianagaram district, Andhra Pradesh, India. The analysis for the groundwater quality for drinking has shown the slightly alkaline nature and high values of alkalinity in the study area. A very high concentration of total dissolved solids value is observed at one pocket where there has been contamination by many fertilizer industries located nearby the study area. The groundwater is highly affected by the nitrate. Higher fluoride values are obtained at few pockets. Most of the samples in the study area are categorized as very hard category. According to the Piper trilinear diagram, it can be observed that the carbonate hardness and secondary salinity have occupied at major part of study area. From the analysis of sodium adsorption ratio, salinity hazard, sodium percentage, residual sodium carbonate, and Kelly’s ratio, all the groundwater samples except at few locations fell under the category of good to excellent for irrigation. The prepared integrated groundwater quality maps for the drinking purpose and agricultural purposes are indicating that, by and large, the low-lying areas are having poor groundwater quality than the uplands for drinking as well as agricultural needs which means that the groundwater quality of the basin is following the topography.  相似文献   

12.
The fluoride (F) concentration in the coastal aquifers of Bara tract in Bharuch district, Gujarat was determined by potentiometric method using an ion-selective electrode. The fluoride concentration in these aquifers varies between 0.060 to 3.51 mg/L. It was also found that F has a positive correlation with pH and HCO(3)(-) whereas negatively correlated with Ca(2+), indicating that high fluoride in ground water is associated with low calcium content. This suggests that the higher pH of water promotes the leaching of fluoride and thus affects the concentration of fluoride in the ground water. It was also found that there exists no relationship between F, EC, and ground water table from surface in the ground water.  相似文献   

13.
There is a growing concern over the potential accumulation of heavy metals in soils owing to rapid industrial and urban development and increasing reliance on agrochemicals in the last several decades. These metals can infiltrate through the soil thereby causing groundwater pollution. Surface soil samples (5 to 15 cm) collected from southeastern part of Ranga Reddy district were analyzed for 14 heavy metals (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) using Philips PW 2440 X-ray fluorescence spectrometer. Results for heavy and trace elements are reported for the first time in soils for this region. The contamination of the soils was assessed on the basis of enrichment factor (EF), geoaccumulation index (I (geo)), contamination factor and degree of contamination. The results reveal that variations in heavy element concentrations in the soil analyzed have both geogenic and anthropogenic contribution, due to the long period of constant human activities in the study area. The concentration of the metals Ba, Rb, Sr, V, Y and Zr were interpreted to be mainly inherited from parent materials (rocks) and the As, Co, Cr, Cu, Mo, Ni, Pb and Zn concentrations show contribution from geogenic and anthropogenic sources. The major element variations in soils are determined by the composition of the parent material predominantly involving granites.  相似文献   

14.
Water quality assessment of Lake Pandu Bodhan, Andhra Pradesh State, India   总被引:1,自引:0,他引:1  
A systematic investigation of variations in some nutrient levels at Pandu Lake from August 2002 to July 2004 was carried out. The untreated domestic wastes from various parts of Bodhan town are directly discharged into Pandu Lake leading to gross pollution. Therefore present investigation was under taken to assess the magnitude of sewage pollution by monitoring key water quality parameters dissolved oxygen, biological oxygen demand, alkalinity, calcium, nitrates and phosphates etc. Monthly water samples were collected from three different sampling stations. Low Dissolved oxygen and high biological oxygen demand, elevated Nitrates and Phosphates levels were found, which gives the information about conversion of this water body from oligotrophic to eutrophic nature. Phosphates were found to be in the range of 0.9 to 4.0 mg/L. Nitrates were found to be higher in Pandu Lake and their number is more in summer, and suitable explanation was given. Nitrates were found to be in range between 24.8mg/L to 71.2mg/L. Data on various chemical characteristics vary at different sites in different months in Pandu Lake. Some of the characteristics like Dissolved Oxygen, Biological Oxygen Demand, Nitrates, Phosphates and nutrient loading are contributing to eutrophication process in this lake and the lake seems to be eutrophic through out the year.  相似文献   

15.
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO $_{3}^{-}$ , HCO $_{3}^{-}$ , Cl???, SO $_{4}^{-2}$ , NO $_{3}^{-}$ , and F???. The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na?+? > Ca2?+??> Mg2?+??> K??? among cations and HCO $_{3}^{-}\:\,>$ Cl????> SO $_{4}^{-2} >$ NO $_{3}^{-} >$ F??? among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2?+? and NO $_{3}^{-}$ takes the place of SO $_{4}^{-2}$ . The Modified Piper diagram reflect that the water belong to Ca?+?2–Mg?+?2–HCO $_{3}^{-}$ to Na?+?–HCO $_{3}^{-}$ facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na?+? and K?+? in aquatic solution took place with Ca?+?2 and Mg?+?2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.  相似文献   

16.
In India, groundwater assessment units are classified as overexploited areas, critical areas, semi-critical, or safe areas based on the stage of groundwater development and long-term water level trends. Intuitively, in the safe units, wells are expected to function and have good yields. Besides, in the safe units, new wells are expected to be successful. Conversely, the expectation of a successful well or wells with good yields is much lesser in the overexploited units. However, when these expectations are not met in the field, doubts are raised about the quality of assessment and its usefulness, and there is outright distrust on the agencies assessing groundwater resource by the common man as well as on the planners, administrators, and the politicians. Therefore, there is a need to present the results in a way that does not create confusion. One of the methods is to combine the assessment results with aquifer characters using geographic information system (GIS); when this is done, a whole set of newer classes emerge, which can be mapped. These classes are termed as groundwater typologies in this study. Each typology has some characteristics or traits in common, which include basic aquifer character as well as the stage of groundwater development. Thus, a class may be safe, but if the aquifer is poor, then it is separated from a class that is safe and where the aquifer is good and so on. In Andhra Pradesh, which is taken as the case study for this purpose, eight main typologies emerged, and two of these main typologies were further divided into four subtypologies each. This new way of understanding the pattern of groundwater abstraction (using GIS) has a better visual impact. Groundwater typologies are found to be much more rational and useful in developing management strategies, rather than simple listing as overexploited areas, critical areas, semi-critical areas, and safe areas as is commonly done. The typologies so delineated indicate on the map (or table) that balanced usable groundwater is in between 5 and 6 bcm/a as against the estimated balance of 20.5 bcm/a, and it is largely in poor hard rock type of aquifers, which occupy about a third of the area of the state.  相似文献   

17.
Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.  相似文献   

18.
India's Unnao region is home to many leather-treatment facilities and related industries. Industrial and agricultural waste leads to heavy metal contamination that infiltrates groundwater and leads to human health hazards. This work measured the amount of heavy metal in groundwater at specific sites near the industrial facilities in Unnao and identified potential sources of contamination as anthropogenic or lithogenic. Groundwater samples were taken from 10 bore well sites chosen for depth and proximity to industry. Data obtained from sample sites was interpreted using a multivariate statistical analytical approach, i.e., principal component analysis, clustering analysis, and correlation analysis. The results of the multivariate analysis showed that cadmium, copper, manganese, nickel, lead, and zinc were correlated with anthropogenic sources, while iron and chromium were associated with lithogenic sources. These findings provide information on the possible sources of heavy metal contamination and could be a model for assessing and monitoring heavy metal pollution in groundwater in other locales. This study analyzed a selection of heavy metals chosen on the basis of industries located in the study area, which might not provide a complete range of information about the sources and availability of all heavy metals. Therefore, an extended investigation on heavy metal fractions will be developed in further studies.  相似文献   

19.
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text]?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-), and Na(+)?>?Mg(2+)?>?Ca(2+)?:?Cl(-)?>?[Formula: see text]?>?[Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.  相似文献   

20.
Fluoride in fractionated soil samples of Ajmer district,Rajasthan   总被引:1,自引:0,他引:1  
The natural abundance of fluoride in soils of the Ajmer distict, Rajasthan was examined. From undisturbed soil, the top 15 cm of the profile was examined and the soil split into fractions based on sand, silt and clay particle size. Clay contained a high amount of fluoride, whereas sand and silts are enriched with much less fluoride. The relation between the soil fractions in observed clay fraction fluoride content matched groundwater fluoride variation. However, the enrichment of fluoride material extracted from the largest soil fraction had considerably lower amounts of clay relative to that from the smaller fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号