首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hong L  Luthy RG 《Chemosphere》2008,72(2):272-281
Polyoxymethylene (POM) is a polymeric material used increasingly in passive sampling of hydrophobic organic contaminants such as PAHs and PCBs in soils and sediments. In this study, we examined the sorption behavior of 12 PAH compounds to POM and observed linear isotherms spanning two orders of magnitude of aqueous concentrations. Uptake kinetic studies performed in batch systems for up to 54 d with two different volume ratios of POM-to-aqueous phase were evaluated with coupled diffusion and mass transfer models to simulate the movement of PAHs during the uptake process and to assess the physicochemical properties and experimental conditions that control uptake rates. Diffusion coefficients of PAHs in POM were estimated to be well correlated with diffusants' molecular weights as D(POM) proportional, variant(MW)(-3), descending from 2.3 x 10(-10) cm(2) s(-1) for naphthalene to 7.0 x 10(-11) cm(2) s(-1) for pyrene. The uptake rates for PAHs with log K(ow)<5.8 were controlled by the POM phase and the hydrophobicity of PAH compounds. For more hydrophobic PAH compounds, the aqueous boundary layer played an increasingly important role in determining the overall mass transfer rate. The POM partitioning technique was demonstrated to agree well with two other procedures for measuring PAH soil-water distribution coefficients in oil-soot (lampblack) containing soil samples.  相似文献   

2.
A significant amount of contamination enters water bodies via stormwater runoff and, to reduce the amount of pollution, retention ponds are installed at many locations. While effective for treating suspended solids, retention ponds do not effectively remove dissolved constituents, such as polycyclic aromatic hydrocarbons (PAH). Previous laboratory studies demonstrates that aspen wood cuttings can be utilized to enhance the removal of dissolved contaminants. The objective of this pilot-scale field test was to determine if wood filters could effectively remove dissolved PAH from the runoff under field conditions. Four wood filter tests were conducted, lasting from 1 to 9 weeks, to determine the degree of PAH attenuation from the aqueous phase as a function of wood mass, residence times, and seasonable changes. The prototype wood filters removed on average between 18.5% and 35.6% (up to 66.5%) of the dissolved PAH contaminants. The PAH removal effectiveness of the wood was not affected by changes in water temperature or pH. The filter effectiveness increased with filter size and was highest in continuously submerged parts of the filter system. Also, heavier molecular weight PAH compounds (e.g. chrysene) were more effectively removed than lighter molecular weight compounds. Disassociation of weakly particle-bound PAH from the filter was identified as the most likely cause for a temporary drop of the wood filter's PAH load during intense storms. Simple filter design changes are likely to double the filter effectiveness and alleviate the disassociation problem.  相似文献   

3.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

4.
The purpose of this study was to investigate the effect of temperature on the release of polycyclic aromatic hydrocarbons (PAHs) from aged contaminated soil. The release of fluorene, phenanthrene, anthracene, fluoranthene and pyrene at 7, 15, 18 and 23 degrees C was studied using a column leaching method with a hydraulic retention time of 0.5 h. As the temperature declined from 23 to 7 degrees C the concentrations decreased by a factor of 11-12 for all the studied compounds except for anthracene, which only decreased by a factor 7. Rate constants at maximum release rate at the four studied temperatures were assessed. From temperature dependence studies, apparent activation energies of desorption, E*(des), were calculated. E*(des)-values appeared to be in the range of 105-137 kJ mol(-1) for the studied PAHs and increased with the LeBas molar volume of the compounds. The increase of E*(des) with increased molecular size indicates stronger sorption with increased hydrophobicity of the compounds.  相似文献   

5.
The use of two natural sorbents, kapok and cattail fibers, were investigated for polycyclic aromatic hydrocarbon (PAH) removal from water. Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene were the PAHs studied. For comparative purposes, a commercial polyester fiber sorbent was included in the investigation. The PAH sorption and retention capabilities of the three fibers were determined through batch and continuous-flow experiments under non-competitive and competitive conditions. In the batch experiments, cattail fiber was the most effective sorbent. Kapok fiber provided the lowest PAH retention, while cattail fiber had slightly less PAH retention than polyester fiber. When two PAHs were present in the same system, a competitive effect on the much less hydrophobic PAH was observed. Similar results were obtained in the column experiments, except that polyester fiber performed much poorer on naphthalene. Cattail fiber is a promising sorbent for treating PAH-contaminated water, such as urban runoff.  相似文献   

6.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

7.
Tissue residues of the PAHs, anthracene, fluorene, fluoranthene and pyrene were determined in Lumbriculus variegatus at four time intervals during both a 96-h exposure period to monitor uptake, and a 96-h clean water period to assess depuration. Mean BCFs were 2390, 1210, 452 and 1920 for fluoranthene, anthracene, fluorene and pyrene, respectively. BCFs were positively correlated with the octanol/water partition coefficient values of the four PAHs. Depuration occurred most rapidly for fluorene, followed by anthracene and fluoranthene. No apparent depuration of pyrene was observed during the 96-h depuration period. Because of rapid depuration of some PAHs, it appears that the 24 h clean water gut clearance period recommended in conjunction with sediment bioaccumulation tests with L. variegatus has potential to result in an under-estimation of bioaccumulation of some chemicals.  相似文献   

8.
The effect of temperature on the range and rate of disappearance of four polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene and chrysene) added as a mixture of pure compounds to two different soils (light loam and loamy sand) was investigated over 180 days in a laboratory experiment. An increase in temperature from 10 to 25 degrees C enhanced the losses of all four PAHs from both soils. The effect of temperature on the rate of PAH disappearance depended on the physico-chemical properties of the compound and of the soil. The long half-lives at lower temperatures as obtained in the laboratory tests may suggest high persistence of higher molecular weight PAHs under some field conditions.  相似文献   

9.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

10.
Lee BD  Iso M  Hosomi M 《Chemosphere》2001,42(4):431-435
Five recalcitrant polycyclic aromatic hydrocarbons (PAHs) in ethanol were subjected to Fenton oxidation, and following GC-MS identification of respective oxidation products, their oxidation positions were compared to those predicted by Frontier electron density. Quinone forms of oxidation products were identified in each PAH. With the exception of fluorene, oxidation positions of quinone forms of products of acenaphthylene, anthracene, benz(a)anthracene, and benzo(a)pyrene corresponded with predicted positions in which Frontier electron density was high. From these results, it appears that determining the Frontier electron density of a PAH is a promising method for predicting the Fenton oxidation position.  相似文献   

11.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

12.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

13.
El Nemr A  Abd-Allah AM 《Chemosphere》2003,52(10):1711-1716
The residues of seven polycyclic aromatic hydrocarbons (PAHs) pollutants in microlayer and subsurface seawater samples collected from Alexandria coast, Egypt, were analyzed by gas chromatography–electron-impact mass spectrometry-selected ion monitoring mode (GC–MS-SIM). The pollutants studied were, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benzo[a]pyrene. Total PAH levels in microlayer ranged from 103 to 523 ng/l, while it ranged in subsurface samples from 13 to 120 ng/l. The Western Harbor location recorded the highest level of PAHs pollutant over all the other location for both subsurface and microlayer waters. The two major PAHs in microlayer water at the Western Harbor were fluorene and phenanthrene, making up 27% and 20% of the total PAHs, while the two major PAHs in subsurface water at the Eastern Harbor were phenanthrene and fluoranthene recording up 21% each of the total PAHs. The total PAH levels were generally in the nano-gram per liter for microlayer and subsurface seawater samples. The dominant PAHs in both subsurface and microlayer samples were fluoranthene, pyrene and benzo[a]pyrene. The microlayer enrichment factor at Alexandria’s Mediterranean coast was ranged from 29 for fluorene to 3 for phenanthrene and benzo[a]pyrene which showed PAHs concentration in the microlayer with an average of five times more than the total PAH in the subsurface samples.  相似文献   

14.
Laboratory and field sampling experiments were conducted to determine the phase-distribution of polynuclear aromatic hydrocarbons (PAH) in the ambient atmosphere and to determine the potential for artifact formation due to volatilization and ozone (O3) reaction during normal sampling conditions. The study was conducted in two segments to investigate both summer and winter ambient temperature effects. The winter measurements reflect stronger association of PAH with the particulate phase than the summer data, but data from both seasons show appreciable filter losses due to volatilization of phenanthrene, anthracene, fluoranthene, benz(a)anthracene and chrysene. No evidence was found for volatilization of the heavier PAH, including benzo(e)pyrene, benzo(a)pyrene, indeno(l,2,3-c,d)pyrene, benzo(g,h,i)perylene and coronene. Although O3 reacted readily with particulate matter that was freshly spiked with PAH in the laboratory experiments, no evidence was found for reaction of O3 with particulate matter during the field sampling experiments.  相似文献   

15.
Background, Aims and Scope Polycyclic Aromatic Hydrocarbons (PAHs) are known for their adverse and cumulative effects at low concentration. In particular, the PAHs accumulate in sewage sludge during wastewater treatment, and may thereafter contaminate agricultural soils by spreading sludge on land. Therefore, sludge treatment processes constitute the unique opportunity of PAH removal before their release in the environment. In this study, the ability of aerobic microorganisms to degrade light and heavy PAHs was investigated in continuous bioreactors treating trace-level PAH-contaminated sludge. Methods Several aerobic reactors were operated under continuous and perfectly mixed conditions to simulate actual aerobic sludge digesters. Three sterile control reactors were performed at 35°C, 45°C or 55°C to assess PAH abiotic losses under mesophilic and thermophilic conditions. Three biological reactors were also operated at 35°C, 45°C or 55°C. Furthermore, 250 mM methanol were added in an additional mesophilic reactor (35°C). All reactors were fed with long-term PAH-contaminated sewage sludge, and PAH removal was assessed by inlet/outlet mass balance. In this study, PAH compounds ranged from 2 to 5-unsubstituted aromatic rings, i.e. respectively from Fluorene to Indeno(123cd)pyrene. Results and Discussion Significant abiotic losses were observed for the lightest PAHs (fluorene, phenanthrene and anthracene), while biodegradation occurred for all PAHs. More than 80% of the lightest PAHs were removed. Biodegradation rates inversely correlated with the increasing molecular weight, and seemed limited by the low bioavailability of the heaviest PAHs (only 50% of removal). The enhancement of PAH bioavailability by increasing the process temperature or adding methanol was tested. A temperature increase from 35°C to 45°C and then to 55°C significantly enhanced the biodegradation of the heaviest PAHs from 50% to 80%. However, high abiotic losses were observed for all PAHs at 55°C, which was attributed to volatilization. Optimal conditions were found at 45°C considering the low abiotic losses and the high PAH biodegradation rates. Similar performances were achieved by addition of methanol in the sludge. It was concluded that increasing temperatures or addition of methanol favored PAH diffusion from solids to an aqueous compartment, and enhanced their bioavailability to PAH-degrading microorganisms. Conclusion In this study, the use of long-term acclimated aerobic ecosystems showed the high potential of aerobic microorganisms to degrade a wide range of PAHs at trace levels. However, PAH biodegradation was likely controlled by their low bioavailability. Two aerobic processes have been finally proposed to achieve efficient decontamination of sewage sludge, at 45°C or in the presence of methanol. The PAH concentrations in reactor outlet were lower than the French requirements, and allow the treated sludge to be spread on agricultural land. Recommendations and Outlook The two proposed aerobic processes used physical or chemical diffusing agents. The global ecological impact of using the latter agents for treating trace level contamination must be considered. Since methanol was completely removed during the process, no additional harm is expected after treatment. However, an increase of temperature to 45°C could drastically increase the energy demand in full-scale plants, and therefore the ecological impact of the process. Moreover, since bioavailability controls PAH biodegradation, efficiency of the processes could also be influenced by the hydraulic parameters, such as mixing and aeration rates. Further experimentations in a pilot scale are therefore recommended, as well as a final assessment of the global environmental benefit of using such aerobic processes in the bioremediation of trace level compounds. - Abbreviations (PAHs): Ant – anthracene; B(a)A – benzo(a)anthracene ; B(b)F – benzo(b)fluoranthene; B(k)F – benzo(k)fluoranthene; B(ghi)P – benzo(g,h,i)perylene; B(a)P – benzo(a)pyrene; Chrys – chrysene; DB – dibenzo(a,h)anthracene; Fluor – fluoranthene; Fluo - fluorene; Ind – indeno(1,2,3-c,d)pyrene; Phe - phenanthrene; Pyr – pyrene - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

16.
A preliminary investigation has been made on the emissions of Polynuclear Aromatic Hydrocarbons (PAH) when burning wood chips and peat in a modified commercial hot water boiler. The amount of the investigated eighteen PAH that were filter trapped from peat combustion averaged 2.7 times greater than that from wood combustion per cubic meter flue gas. The total emitted amount (particulate plus gas phase PAH) was 9.7 times greater than from wood combustion. The corresponding values for benzo(a)pyrene only were 1.7 and 3.5 times greater, respectively. The comparison of PAH emitted by the combustion of wood and peat showed a pronounced tendency towards the emission of high molecular weight PAH by the latter.Particulate phase-gas phase distribution ourves are presented for PAH in the boiling point range 336°C – 525°C. In addition, the emission of a polynuclear aromatic ketone is shown.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

18.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

19.
The bioavailable concentration of an organic pollutant is less than the concentration determined by vigorous extraction of soil. Because bioavailability varies with the particular compound, soil, and aging time, an assay for bioavailability is needed. Three methods were tested: extraction with a 25% aqueous solution of tetrahydrofuran (THF), 95% ethanol, and C18 membranes. Evaluations were conducted with a mixture of four polycyclic aromatic hydrocarbons (PAHs) added to five dissimilar soils and with pyrene as sole PAH added to six soils, and the availability of aged and freshly added compounds was determined. Assimilation by earthworms (Eisenia fetida) was used to assess bioavailability. For extraction with THF and earthworm uptake, the correlation coefficients of determination (R2) for anthracene, chrysene, pyrene, and benzo(a)pyrene added as a mixture exceeded 0.85. The R2 values for assays with the C18 membrane were 0.77 or higher. The values for pyrene added alone were 0.710 and 0.823, respectively. R2 values for assays with ethanol often exceeded 0.87, but lower values were sometimes obtained. We suggest that such solvent or solid-phase extractions may be useful in assessing PAH bioavailability.  相似文献   

20.
This study investigated the levels, sources and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in two sediment cores that were collected along the Huaxi Reservoir. The spatial distributions and residue levels of the 16 priority PAHs in the sediments from the Huaxi Reservoir were analyzed for their potential ecological risk, source apportionment and contribution to the total PAH residue. The concentration level of the total PAHs (TPAHs) was in the range 1805 ng·g?1 to 20023 ng·g?1 based on dry weight, and the content of PAHs in the Huaxi Reservoir exhibited a gradual upward trend. The PAH congener ratios fluoranthene/(fluoranthene + pyrene) and indeno[1, 2, 3-cd]pyrene/(indeno[1, 2, 3-cd]pyrene + benzo[g, h, i]perylene) were used to identify the source. The main source of the low molecular weight PAHs was wood and coal combustion, whereas the high molecular weight PAHs were primarily from petroleum combustion sources. The results of an ecological risk assessment demonstrated that ACE poses a potential ecological risk, while FLU, NAP, ANT, BaP, DBA, PHEN and PYR can have serious ecological risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号