首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Awareness of environmental heterogeneity in ecosystems is critical for management and conservation. We used the Xochimilco freshwater system to describe the relationship between heterogeneity and human activities. This tropical aquatic ecosystem south of Mexico City is comprised of a network of interconnected canals and lakes that are influenced by agricultural and urban activities. Environmental heterogeneity was characterized by spatially extensive surveys within four regions of Xochimilco during rainy and dry seasons over 2 years. These surveys revealed a heterogeneous system that was shallow (1.1 m, SD = 0.4 ), warm (17°C, SD = 2.9), well oxygenated (5.0 mg l−1, SD = 3), turbid (45.7 NTU SD = 26.96), and extremely nutrient-rich (NO3–N = 15.9 mg l−1, SD=13.7; NH4–N = 2.88 mg l−1, SD = 4.24; and PO4–P =  8.3 mg l−1, SD = 2.4). Most of the variables were not significantly different between years, but did differ between seasons, suggesting a dynamic system within a span of a year but with a high resilience over longer periods of time. Maps were produced using interpolations to describe distributions of all variables. There was no correlation between individual variables and land use. Consequently, we searched for relationships using all variables together by generating a combined water quality index. Significant differences in the index were apparent among the four regions. Index values also differed within individual region and individual water bodies (e.g., within canals), indicating that Xochimilco has high local heterogeneity. Using this index on a map helped to relate water quality to human activities and provides a simple and clear tool for managers and policymakers.  相似文献   

2.
Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy. An erratum to this article is available at .  相似文献   

3.
In this study, water quality and basin characteristics data from different basins of the Fish River basin, Baldwin County, Alabama, were used to develop a valuation model. This valuation model is based on the effectiveness of “contributing zones” identified and delineated using methods described by Basnyat and others (Environmental Management]1999] 23(4):539–549). The “contributing zone” delineation model suggests that depending on soil permeability, soil moisture, depth to water table, slope, and vegetation, buffer widths varying from 16 m to 104 m must be maintained to assimilate or detain more than 90% of the nitrate passing through the buffers. The economic model suggests the value of retiring lands (to create the buffers) varies from $0 to $3067 per ha, depending on the types of crops currently grown. The total value of retiring all areas identified by the contributing zone model is $1,125,639 for the study area. This land value will then form the basis for estimates of the costs of land management options for improving (or maintaining) water quality throughout the study area.  相似文献   

4.
/ Models available in the literature on nutrient uptake, lightavailability, and chlorophyll growth have been suitably modified andintegrated through the computer program CHLORF (written in "C"language), which has the advantage of being amenable to simulation undervarious combinations of input variables. The model has been used forsensitivity analysis in order to identify the most sensitive set ofparameters whose control can form an appropriate basis for evolving pragmaticmanagement strategies. In addition, greenhouse mitigation potential has beencomputed in terms of assimilation of carbon dioxide for a case study ofIndian wetlands.KEY WORDS: Wetland; Nutrient cycling; Modeling; Greenhouse effect  相似文献   

5.
The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission–water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach - at least on a temporary basis.  相似文献   

6.
宋广瑞  刘丹 《四川环境》2006,25(2):120-123
本文根据常微分方程参数反问题的数学理论,将正交化方法同有限差分法结合用于确定水质模型参数,并与正则化方法、最速下降法和共轭梯度法作了比较。其计算结果对比表明,正交化方法具有快速、简便、可靠的特点。更适合于水质模型参数的确定。  相似文献   

7.
We used a GIS-based approach to examine the influence of road density and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal marshes of Georgian Bay, Ontario. We created a GIS that included landscape information and water-quality data from a 9-year synoptic survey of 105 coastal marshes covering 28 quaternary watersheds. Multiple regressions and partial correlations were used to discern confounding effects of human-induced (road density) versus natural physical watershed determinants of water quality. Road density was the dominant factor influencing many water quality variables, showing positive correlations with specific conductivity (COND), total suspended solids (TSS), and inorganic suspended solids (ISS) and a negative correlation with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate nitrogen (TNN) and total phosphorus (TP). By comparison, larger watershed area was the main factor leading to elevated TP concentrations. The proportion of the watershed occupied by wetlands explained the largest amount of variation in TNN concentrations (negative correlation) and was also negatively correlated with COND and positively correlated with TSS and ISS when we controlled for road density. Bedrock type did not have a significant effect in any of the models. Our findings suggest that road density is currently the overriding factor governing water quality of coastal marshes in Georgian Bay during the summer low-flow period. We recommend that natural variation in physical watershed characteristics be considered when developing water quality standards and management practices for freshwater coastal areas.  相似文献   

8.
小管径配水管网水质模型模拟结果精度高.但由于管网工况的复杂性,水质模型预测结果具有不确定性.通过定义水质模型的本质脆弱性,建立脆弱性分析模型,采用指标评价法研究模型在不同验证工况下的脆弱性,可以有效降低水质模型预测风险、构建水质模型失效“防火墙”,为帮助供水企业更为广泛地应用模型预测水质提供理论依据.  相似文献   

9.
Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.  相似文献   

10.
Since intensive farming practices are essential to produce enough food for the increasing population, farmers have been using more inorganic fertilizers, pesticides, and herbicides. Agricultural lands are currently one of the major sources of non-point source pollution. However, by changing farming practices in terms of tillage and crop rotation, the levels of contamination can be reduced and the quality of soil and water resources can be improved. Thus, there is a need to investigate the amalgamated hydrologic effects when various tillage and crop rotation practices are operated in tandem. In this study, the Soil Water Assessment Tool (SWAT) was utilized to evaluate the individual and combined impacts of various farming practices on flow, sediment, ammonia, and total phosphorus loads in the Little Miami River basin. The model was calibrated and validated using the 1990–1994 and 1980–1984 data sets, respectively. The simulated results revealed that the SWAT model provided a good simulation performance. For those tested farming scenarios, no-tillage (NT) offered more environmental benefits than moldboard plowing (MP). Flow, sediment, ammonia, and total phosphorus under NT were lower than those under MP. In terms of crop rotation, continuous soybean and corn–soybean rotation were able to reduce sediment, ammonia, and total phosphorus loads. When the combined effects of tillage and crop rotation were examined, it was found that NT with continuous soybean or corn–soybean rotation could greatly restrain the loss of sediments and nutrients to receiving waters. Since corn–soybean rotation provides higher economic revenue, a combination of NT and corn–soybean rotation can be a viable system for successful farming.  相似文献   

11.
A Water Quality Index (WQI) is a numeric expression used to evaluate the quality of a given water body and to be easily understood by managers. In this study, a modified nine-parameter Scottish WQI was used to assess the monthly water quality of the Douro River during a 10-year period (1992–2001), scaled from zero (lowest) to 100% (highest). The 98,000 km2 of the Douro River international watershed is the largest in the Iberian Peninsula, split between upstream Spain (80%) and downstream Portugal (20%). Three locations were surveyed: at the Portuguese–Spanish border, 350 km from the river mouth; 180 km from the mouth, where the river becomes exclusively Portuguese; and 21 km from the mouth. The water received by Portugal from Spain showed the poorest quality (WQI 47.3 ± 0.7%); quality increased steadily downstream, up to 61.7 ± 0.7%. In general, the water quality at all three sites was medium to poor. Seasonally, water quality decreased from winter to summer, but no statistical relationship between quality and discharge rate could be established. Depending on the location, different parameters were responsible for the episodic decline of quality: high conductivity and low oxygen content in the uppermost reservoir, and fecal coliform contamination downstream. This study shows the need to enforce the existing international bilateral agreements and to implement the European Water Quality Directive in order to improve the water quantity and quality received by the downstream country of a shared watershed, especially because two million inhabitants use the water from the last river location as their only source of drinking water.  相似文献   

12.
The control and prevention of nutrient pollution from fish farming plays an essential role in the French regulatory framework. Assessing nutrient emissions from fish farms is important in terms of farm authorization, taxation, and monitoring. Currently employed strategies involve both water sampling and empirical modeling. This article reports the work and outcomes of an expert panel that evaluated existing methodologies and their possible alternatives. The development and evaluation of a nutrient-balance approach was assessed as a potential alternative to currently used methodologies. A previously described nutrient-balance model was suggested and parameterized using expert choice, and its validity and applicability were assessed. The results stress that the nutrient-balance model provides more robust and relatively conservative waste estimates compared to the currently used methodologies. Sensitivity of the approach to the uneven data quality available at farm level, difficulties of on-farm measurements, as well as model requirements and limitations are discussed.  相似文献   

13.
Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.  相似文献   

14.
因子分析法在江安河地表水水质评价中的应用   总被引:3,自引:1,他引:3  
道里刚  唐亚  王安 《四川环境》2004,23(2):75-77,83
因子分析法是主成份分析方法的推广和深化,是把原来多个变量化为少数几个综合指标的一种统计方法。本文通过该法对江安河四川大学双流校区段水质进行了评价,结果表明,该水体受到了不同程度的有机物污染,其中非离子氨、阴离子洗涤剂、化学耗氧量,溶解氧所占的负荷最大。  相似文献   

15.
A milestone in the field of European water protection policy is the European Union’s Water Framework Directive (WFD), which came into force in December 2000 and which integrates the management of European waters in many ways. In this study, we start by focusing on management issues connected to the implementation of the WFD and pose a question: “what type of models would be the most suitable for use in the context of the WFD?” With this question in mind, we aim to establish a set of operational and functional selection criteria for (computer) models whose application is intended to support decision-making related to a particular water management issue. These so-called “benchmark criteria” should help water managers and other model users in choosing appropriate models, e.g., for the WFD implementation purposes. We first describe models and their use in general and then propose an approach for setting the benchmark criteria for models, basing it on the concept of uncertainty management, while keeping firmly in mind the important role of citizens and citizen organizations in water management. The suggested benchmark criteria are in the form of 14 questions through which each model can be evaluated. Finally, the process for testing and refining the benchmark criteria is highlighted.  相似文献   

16.
Watershed modeling in 20 large, United States (U.S.) watersheds addresses gaps in our knowledge of streamflow, nutrient (nitrogen and phosphorus), and sediment loading sensitivity to mid‐21st Century climate change and urban/residential development scenarios. Use of a consistent methodology facilitates regional scale comparisons across the study watersheds. Simulations use the Soil and Water Assessment Tool. Climate change scenarios are from the North American Regional Climate Change Assessment Program dynamically downscaled climate model output. Urban and residential development scenarios are from U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios project. Simulations provide a plausible set of streamflow and water quality responses to mid‐21st Century climate change across the U.S. Simulated changes show a general pattern of decreasing streamflow volume in the central Rockies and Southwest, and increases on the East Coast and Northern Plains. Changes in pollutant loads follow a similar pattern but with increased variability. Ensemble mean results suggest that by the mid‐21st Century, statistically significant changes in streamflow and total suspended solids loads (relative to baseline conditions) are possible in roughly 30‐40% of study watersheds. These proportions increase to around 60% for total phosphorus and total nitrogen loads. Projected urban/residential development, and watershed responses to development, are small at the large spatial scale of modeling in this study.  相似文献   

17.
Cochran, Bobby and Charles Logue, 2011. A Watershed Approach to Improve Water Quality: Case Study of Clean Water Services’ Tualatin River Program. Journal of the American Water Resources Association (JAWRA) 47(1):29‐38. DOI: 10.1111/j.1752‐1688.2010.00491.x Abstract: Over the last five years, Clean Water Services developed and implemented a program to offset thermal load discharged from its wastewater facilities to the Tualatin River by planting trees to shade streams and augmenting summertime instream flows. The program has overcome challenges facing many of the nation’s water quality trading programs to not only gain consensus on the frameworks needed to authorize trading, but also provide a broad range of ecosystem services. This paper compares the Tualatin case study with some of the commonly cited factors of successful trading programs.  相似文献   

18.
This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had insufficient revenues to deploy new projects in its budget. The bond initiative required a supermajority vote (two-thirds of the voters), hence the public had to be convinced that such funding both was necessary and would be effective. The bond act language included project solicitation from the public, as well as multiple benefit objectives. Accordingly, nonprofit organizations mobilized to present projects that included creating new parks, using schoolyards for flood control and groundwater recharge, and replacing parking lots with permeable surfaces, among others. Yet few, if any, of these projects were retained for funding, as the city itself also had a list of priorities and higher technical expertise in justifying them as delivering water quality improvements. Our case study of the implementation of Proposition O points to the potentially different priorities for the renovation of urban infrastructure that are held by nonprofit organizations and city agencies and the importance of structuring public processes clearly so that there are no misimpressions about funding and implementation responsibilities that can lead to disillusionment with government, especially under conditions of fiscal constraints.  相似文献   

19.
Coastal waters have been significantly influenced by increased inputs of nutrients that have accompanied population growth in adjacent drainage basins. In Tampa Bay, Florida, USA, the population has quadrupled since 1950. By the late 1970s, eutrophic conditions including phytoplankton and macroalgal blooms and seagrass losses were evident. The focus of improving Tampa Bay is centered on obtaining sufficient water quality necessary for restoring seagrass habitat, estimated to have been 16,400 ha in 1950 but reduced to 8800 ha by 1982. To address these problems, targets for nutrient load reductions along with seagrass restoration goals were developed and actions were implemented to reach adopted targets. Empirical regression models were developed to determine relationships between chlorophyll a concentrations and light attenuation adequate for sustainable seagrass growth. Additional empirical relationships between nitrogen loading and chlorophyll a concentrations were developed to determine how Tampa Bay responds to changes in loads. Data show that when nitrogen load reduction and chlorophyll a targets are met, seagrass cover increases. After nitrogen load reductions and maintenance of chlorophyll a at target levels, seagrass acreage has increased 25% since 1982, although more than 5000 ha of seagrass still require recovery. The cooperation of scientists, managers, and decision makers participating in the Tampa Bay Estuary Program’s Nitrogen Management Strategy allows the Tampa Bay estuary to continue to show progress towards reversing many of the problems that once plagued its waters. These results also highlight the importance of a multi-entity watershed management process in maintaining progress towards science-based natural resource goals.  相似文献   

20.
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号