首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In planktonic food webs, the conversion rate of plant material to herbivore biomass is determined by a variety of factors such as seston biochemical/elemental composition, phytoplankton cell morphology, and colony architecture. Despite the overwhelming heterogeneity characterizing the plant–animal interface, plankton population models usually misrepresent the food quality constraints imposed on zooplankton growth. In this study, we reformulate the zooplankton grazing term to include seston food quality effects on zooplankton assimilation efficiency and examine its ramifications on system stability. Using different phytoplankton parameterizations with regards to growth strategies, light requirements, sinking rates, and food quality, we examined the dynamics induced in planktonic systems under varying zooplankton mortality/fish predation, light conditions, nutrient availability, and detritus food quality levels. In general, our analysis suggests that high food quality tends to stabilize the planktonic systems, whereas unforced oscillations (limit cycles) emerge with lower seston food quality. For a given phytoplankton specification and resource availability, the amplitude of the plankton oscillations is primarily modulated from zooplankton mortality and secondarily from the nutritional quality of the alternative food source (i.e., detritus). When the phytoplankton community is parameterized as a cyanobacterium-like species, conditions of high nutrient availability combined with high zooplankton mortality led to phytoplankton biomass accumulation, whereas a diatom-like parameterization resulted in relatively low phytoplankton to zooplankton biomass ratios highlighting the notion that high phytoplankton food quality allows the zooplankton community to sustain relatively high biomass and to suppress phytoplankton biomass to low levels. During nutrient and light enrichment conditions, both phytoplankton and detritus food quality determine the extent of the limit cycle region, whereas high algal food quality increases system resilience by shifting the oscillatory region towards lower light attenuation levels. Detritus food quality seems to regulate the amplitude of the dynamic oscillations following enrichment, when algal food quality is low. These results highlight the profitability of the alternative food sources for the grazer as an important predictor for the dynamic behavior of primary producer–grazer interactions in nature.  相似文献   

2.
In order to test the ability of phytoplankton to adapt to the high frequency light fluctuations induced by sea surface waves, the green alga Dunaliella tertiolecta was grown under both steady and fluctuating (0.1, 1.0 and 10 Hz) illuminations. The latter conditions reproduced those fluctuations experienced by phytoplankton in the upper photic layer. For each culture, photosynthesis versus irradiance were measured under four incubation frequencies (steady, 0.1, 1.0 and 10 Hz fluctuating illuminations). Results indicated that growth rates were similar for algae grown under steady light and 10 Hz fluctuating light (0.26–0.33 d–1). Cells grown at 0.1 and 1.0 Hz showed lower growth rates (0.17–0.26 d–1). Chlorophyll a and b were significantly higher under 0.1 and 10 Hz frequencies than under steady illumination; at 1.0 Hz, there were no significant differences with steady light. No changes in carotenoids were evidenced at any frequency tested. Photosynthetic measurements showed that algae grown under steady illumination had higher photosynthetic efficiency and capacity when incubated under steady and 0.1 Hz fluctuating light. Photosynthetic characteristics of algae grown under 0.1 Hz illumination did not show any clear responses to fluctuating light. Algae grown under 1.0 or 10 Hz had higher photosynthetic efficiency and capacity than those grown under steady illumination, when incubated under 1.0 and 10 Hz light. This suggests that microalgae grown under high frequency illumination (1.0 and 10 Hz) can adapt their photosynthetic characteristics to the rapidly fluctuating light regime experienced during growth, and that algae grown under steady conditions respond better to steady or slowly fluctuating (0.1 Hz) light. Such an adaptation provides a means of probing the photosynthetic responses of phytoplankton to vertical mixing.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

3.
The effects of body size and suspension density on filtration rates, assimilation efficiencies and respiration rates in the ribbed musselAulacomya ater (Molina) have been determined by means of short-term laboratory experiments. Filtration rates accelerate rapidly in response to increasing algal concentration up to approximately 10×106 cellsDunaliella primolecta l-1, beyond which a plateau is approached. Percentage increments are greatest in small individuals. Assimilation efficiencies are independent of body size, but decline rapidly with increasing ration to approach zero above 32×106 cells l-1. Increases in respiration rate accompany increments in filtration rate in all but the smallest size class tested. Filtration, assimilation efficiency and respiration measurements are used to calculate ingestion rations, assimilation rations and scope for growth for mussels of different sizes over a range of algal concentrations. Scope for growth, expressed as percentage change in body energy per day, is a declining function of body size, but larger individuals achieve their maximum growth rates at lower ration levels than smaller ones. Growth efficiency is independent of body size, and is maximal at 5×106 cells l-1, where 29 to 43% of ingested ration is converted into body energy. The applicability of these experimental results to natural ecosystems is discussed.  相似文献   

4.
Basing on a quantification of filtration, ingestion, assimilation, biodeposition, excretion and respiration rate, energy budgets were established in Mytilus chilensis Hupé in relation to body size and three different food concentrations of the unicellular green alga Dunaliella marina. The present quantifications revealed that in M. chilensis the ingestion rate only increases slightly with an increase in food concentration which, however, is counterbalanced by a significant decrease in assimilation efficiency in such a way that assimilation rate finally is nearly constant and independent of the food concentrations tested. The quantifications of these results are given by the a-values of the general allometric growth equation P=aWb relating the energy disposable for growth and reproduction (P; cal d-1 to body size (W; dry-tissue wt, g). The best energy budget was obtained at the lowest food concentration tested (0.8 mg algal dry wt l-1; at 12°C and 30 S) with an a-value of 58.8, while the energy budget at the highest food concentration (2.14 mg l-1) was only slightly lower with an a-value of 49.8; the b-values were 0.49 and 0.51, respectively. The net growth efficiencies (K2) decreased with increasing body size (from 20 mg to 3 000 mg drytissue wt) from 76.7 to 47.9% at the lowest food level and from 72.6 to 44.0% at the highest food level tested. These relatively high net growth efficiencies seem to reflect optimal experimental conditions. Furthermore, by a comparison of estimated growth (calculated on the basis of the best energy budget) with growth actually quantified in culture raft mussels in the south of Chile during the highest production period of the year, it is obvious that the energy budgets established really reflect the conditions experienced by the mussels in their natural environment.This research was supported by grants S-80-3 and C-80-1 of the D.I.D.-UACH, by CONICYT, Found. Volkswagenwerk, Found. Fritz-Thyssen, by the GTZ, DFG and by the DAAD  相似文献   

5.
The nutritional status of a phytoplankton community was investigated in a coastal jet-front located in the Gulf of St. Lawrence, Canada, in 1987. During the sampling period, the frontal community was mainly composed of the diatomsChaetoceros debilis, Skeletonema costatum, Thalassiosira gravida andC. pelagicus. As previously reported for the St. Lawrence, some frontal stations were depleted both in nitrate and silicate. At stations impoverished in nitrate, internal nitrate pool concentrations were low or undetectable, suggesting that cells had not, recently, been exposed to a nitrate flux which exceeded the nitrate assimilation rate. At these impoverished stations, however, ambient and intracellular concentrations of ammonium and urea were high, suggesting that the community was not nitrogen-deficient. The comparison between the ambient silicate concentrations and the silicate requirement (K s ) of the dominant diatoms suggests thatC. debilis andS. costatum were Si-deficient. This is further supported by the low silicate uptake rates and intracellular concentrations measured at the silicate impoverished stations. The silicate deficiency also resulted in a decrease in the seston and phytoplankton N:C ratios.Please address all correspondence and requests for reprints to Dr Levasseur at his new address: Maurice Lamontagne Institute, 850 Route de la Mer, Mont-Joli, Québec G5H 3Z4, Canada  相似文献   

6.
The growth and mortality of experimentally-rafted Mytilus edulis L. of known age at 7 locations in a northern estuary (Damariscotta River, Maine, USA) were related to environmental temperatures and to the presence or absence of various potential food sources. All particles were regarded as potential food substrates. Growth decreased appreciably at sites where water temperatures exceeded 20°C, but mussels survived a wide range of elevated temperature exposures, ranging from 0 to 149 degree-days in excess of 20°C. The maximum temperature was 25°C. Mortalities of mussels at all sites but did affect the extent of mortality, which increased abruptly in late summer, when water temperatures were declining. Differences in degree-days of exposure to elevated temperatures did not influence the timing of mortality, which occurred synchronously at all times, but did affect the extent of mortality, which ranged from 35 to 90%. The period of high mortality was preceded by a rapid decline in phytoplankton standing crop. Total particle concentrations decreased during this period, but the shift toward larger particles suggests that there was little, if any, decrease in total volume of material in the seston, at least through August. It is suggested that living phytoplankton provided the critical energy source for these mussels, and that the mortalities were caused by rapidly reduced ration at a time of metabolic stress. The role of temperature and the possible role of the gametogenic cycle are discussed. In addition, the feeding efficiency of M. edulis may have decreased during this period due to an increase in mean particle diameter. Chlorophyll was divided into a nannoplankton fraction (<-20 m) and a larger fraction (>20 m). A smaller size criterion for this distinction is proposed for future studies. The importance of nannoplankton to the primary production of this estuary and the role of nannoplankton and nannoplankton-sized particles in the diet of mussels in nature are discussed.  相似文献   

7.
Physiological responses of Mytilus chilensis exposed to the toxic dinoflagellate Alexandrium catenella were measured over 21 days in the laboratory and were compared with control mussels not exposed to the dinoflagellate. Mussels were collected from culturing ropes at Yaldad Bay, southern Chile (43o08′S 73o44′W), in August 2004 and acclimated to laboratory conditions for one week prior to the experiment. After 8 days, the paralytic shellfish poisoning (PSP) toxins (i.e. saxitoxin) in the tissues of exposed mussels exceeded safe levels for human consumption. Clearance rates, ingestion of organic matter, and absorption efficiency of exposed mussels were significantly lower than those of controls on day 0, but this was followed by an increase on day 3. The exposed mussels also increased their excretion rate over time, and this increase was significantly correlated with the accumulation of PSP toxins in their tissues. Oxygen consumption was not affected by the PSP toxins. The scope for growth (SFG) on day 0 was negative in exposed mussels, but it increased during the experiment. Although feeding activity and absorption efficiency were adversely affected during the first few days of exposure to PSP toxins from A. catenella in the laboratory, the M. chilensis cultured in Yaldad Bay may have evolved mechanisms that allow them to exploit the toxic dinoflagellate as a food source.  相似文献   

8.
The effects of chronic copper exposure on growth and physiological responses of the green mussel Perna viridis were investigated by exposing the mussels to 50 μg l−1 Cu for 3 mo at 17 and 25 °C. These temperatures represent, respectively, the winter and summer seawater temperatures in Hong Kong. Differences in the level of response between mussels exposed for 3 mo to 50 μg Cu l−1 generally increased with duration of exposure. The tissue concentration of copper had increased by 280 and 450% after 3 mo exposure at 17 and 25 °C, and growth performances were reduced, with the 25 °C sets suffering from larger negative impact of copper in most responses. The inhibitory effects of copper on production of the various body components generally followed the order linear shell growth (greatest) > tissue production > byssus production > shell production. There were also decreases in the condition index (43 and 35% reductions at 17 and 25 °C), clearance rates (10.3 and 18.5%), faeces production (11 and 16.3%), assimilation efficiency (6.8 and 9.2%) and oxygen consumption rate (12.8 and 24.8%). In contrast, the organic content of the faeces (9.2 and 13.2% increases at 17 and 25 °C) and rate of ammonia excretion (21 and 28.6%), increased upon chronic copper exposure. Many of the responses (e.g. changes in tissue copper content, body dry wt, shell organic content, clearance rate and oxygen consumption rate) exhibited fluctuating levels of impact during prolonged copper exposure, while others (e.g. faecal production rate, assimilation efficiency, tissue organic content) demonstrated steady decreasing trends with increasing exposure time. Received: 17 September 1999  相似文献   

9.
Mussels (Mytilus edulis) suspended in the water column in 1994 and 1995 for the monitoring of oil drilling operations off Sable Island, Nova Scotia were examined for hydrocarbon profiles, particularly aliphatic hydrocarbons. A spring bloom of phytoplankton occurred during the 90-d suspension period in 1995. Hydrocarbons isolated from the 1995 suspended mussels showed very high concentrations of both biogenic hydrocarbons and very long-chain n-alkanes from C20 to C32, initially thought to be petrogenic. Both types of hydrocarbons were either not detected or were only present in trace amounts in the mussels suspended in 1994 at similar sites. The biogenic hydrocarbons in the 1995 mussels were apparently of planktonic origin, from the spring bloom, and were dominated by heneicosahexaene (21:6), followed by pristance, heptadecane, and varions monounsaturated and polyunsaturated phytenes, heptadecenes, nonadecenes and heneicosenes. They could be readily hydrogenated to yield the basic alkanes. The 1995 mussels suspended within 1 km from the oil well platform were probably slightly tainted by petrogenic hydrocarbons, as evidenced by the detection of phytane and high concentrations of total aliphatic hydrocarbons, whereas the mussels suspended 10 km from the platform showed only high concentrations of biogenic hydrocarbons and the novel long-chain n-alkanes. The occurrence of an unusual phytoplankton bloom during the suspension period severely interfered with the petroleum monitoring role of mussels by altering the mussel hydrocrbon profiles through the accumulation into and probably selective depuration of xenobiotic hydrocarbons from the mussel, tissues.J. Parsons (deceased)  相似文献   

10.
A laboratory experiment was conducted in the winter of 2003–2004 to assess the effect of varying photoperiod regime on consumption rate, assimilation rate, absorption efficiency, and gonad development of the green sea urchin, Strongylocentrotus droebachiensis. Adult individuals were collected from the wild after they had been exposed to the ambient autumn photoperiod cue (which is the extraneous trigger thought to elicit gametogenesis in this species) and placed at ambient temperature for 12 weeks under five different photoperiod regimes: (1) 24 h light:0 h dark=“0D”, (2) 16 h light:8 h dark=“8D”, (3) 8 h light:16 h dark=“16D”, (4) 0 h light:24 h dark=“24D”, and (5) ambient photoperiod (range: 10.50–15.25 h dark). Urchins in these five treatments were fed ad libitum with bull kelp, Nereocystis luetkeana. A sixth treatment consisted of starved individuals held under 0D conditions. Various gonad factors including gonad index, percent gonad water, gonad colour (CIE lightness or L*, CIE hue or a*, and CIE chroma or b*), percent area occupation of the gonad by various cell types (nutritive phagocytes, spermatozoa, and secondary oocytes/ova), and stage of development were assessed at the beginning of the experiment and at weeks 4, 8, and 12 of the study. Consumption and assimilation rates were assessed at weeks 4 and 12 and absorption efficiency at week 12 of the experiment. Urchins were predominantly in the growing and premature stages at the beginning of the experiment, but by week 4 at least 20% of individuals in all treatments receiving food were classified as mature. Spawning occurred during all these treatments between weeks 4 and 8, as evidenced by significant decreases in spermatozoa and secondary oocytes/ova and a significant decrease in percent gonad water, but was not accompanied by major declines in gonad indices. Greater than 90% of individuals in all five of the fed treatments were in the recovering and growing stages at the end of the experiment. The 16D treatment had by far the greatest percentage of urchins in the growing stage. In contrast, individuals that were starved were predominantly in the mature stage at weeks 4, 8, and 12, with only ~30% reaching the spawning stage by the end of the experiment. Photoperiod significantly affected gonad indices at the termination of the experiment with gonad index being the highest in the 16D treatment; this was significantly greater than in the 8D and ambient treatments. Photoperiod did not significantly affect gonad percent water, gonad lightness, or gonad hue. Gonad chroma was significantly affected by photoperiod, urchins held under ambient conditions having significantly lower b* readings than individuals in any other treatment. Photoperiod had little or no affect on consumption rate, assimilation rate, or absorption efficiency. Thus, differences among treatments in regards to gonad index, gonad chroma, and stage of development cannot be attributed to variations in feeding, absorption, or assimilation. The results of this experiment indicate that once gametogenesis is initiated, photoperiod manipulation cannot prevent ultimate spawning. However, photoperiod regime can affect the rate at which urchins move through the various stages of the gametogenic cycle. Urchins placed on short days under artificial lighting (16D) moved through the spawning stage into recovering and growing stages the fastest. This photoperiod regime also produced the highest gonad index at the end of the experiment. Since the commercial urchin market prefers large gonads in the growing and premature stages (i.e. before the mature stage is reached and gonads start leaking sperm and eggs), short day-lengths under artificial lighting (16D) appear to be the best photoperiod conditions for optimizing marketability.  相似文献   

11.
We examined trace metal ingestion and assimilation (Cd, Se, Zn) by the green mussel Perna viridis in a mixture of diatoms and sediment at concentrations below and above the pseudofeces production levels. Dual gamma radiotracers (109Cd, 65Zn) were used to investigate particle selection on marine diatoms and sediments. The diatom (Thalassiosira weissflogii) was radiolabeled with 109Cd, and the natural sediment was radiolabeled with 65Zn. By comparing the ratios of 109Cd:65Zn in the particle mixture, mussel tissues and pseudofeces within a short-term exposure period (35 min), the results demonstrated that the green mussels were able to selectively ingest the diatom particles at a high particle load. Efficiency of selection for nutritious particles (e.g. diatoms) increased with increasing ratio of sediments in the particle mixture. Pseudofeces contained a higher ratio of sediments relative to that in the feeding suspension. No major particle selection was observed at concentrations below the level for pseudofeces production. The assimilation of Cd, Se and Zn by the green mussels was quantified using a pulse-chase feeding technique. The assimilation of Se and Zn by the green mussels from ingested diatoms was reduced with the presence of sediment within the mussel gut, presumably due to the resorption of metals onto the sediment, leading to a quicker passage of metals through the digestive tract and a lower proportion of metals subjected to intensive digestion. In contrast, the presence of diatoms did not significantly affect metal assimilation from ingested sediment. A significant correlation between metal assimilation efficiency and metal gut passage time was also observed. Metal assimilation by the green mussels appeared to be little dependent on the particle concentration in seawater. Our study suggests that particle selection may potentially alter metal influx from ingested food sources, particularly at high particle concentrations. Selective feeding of nutritious particles, coupled with a high assimilation efficiency from these ingested particles, may increase metal influx into mussels from the dietary phase.  相似文献   

12.
Mussels have been widely used as bioindicators of coastal contamination, and recent reports have demonstrated that metals are accumulated from both the dissolved phase and from ingested food. In the winter and spring of 1995, we examined the influence of the chemical composition of food (protein content, trace element concentrations and ratios in the diatom Thalassiosira pseudomana) on the assimilation of six trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis (L.). Differences of up to 38% in diatom protein content had no major influence on the assimilation of any trace element or carbon. Protein assimilation in M. edulis examined with a 35S radiotracer was also independent of protein content in the diatoms. Similarly, Se assimilation in mussels was not affected by the different Se concentrations in the diatoms. Cd assimilation increased with increasing Cd concentration, presumably due to higher desorption of Cd under acidic conditions typical of the mussel gut. Zn assimilation was inversely related to Zn concentration in the food particles, implying a partial regulation of this metal in the mussels. There was no evidence of any interaction of Cd and Zn in their assimilation by the mussels. These results suggest that mussels are highly responsive, in an element-specific way, to some components of ingested food (e.g., metal concentration), but other food components (such as the biochemical composition of the algae) have little effect on assimilation.  相似文献   

13.
Water samples were collected on a fortnightly basis in the lagoon of S. Gilla (Sardinia, Mediterranean Sea) in order to study seasonal nutritional fluctuations of particulate organic matter. the lagoon is characterized by high quantities of suspended matter throughout the year. Thermohaline conditions had no effect on particulate matter quantity and composition, but the quantity as well as quality of suspended particles was drastically affected by the wind, the major effecter of sediment resuspension. As a result of sediment resuspension, seston was always richer in inorganic fraction. However, throughout the year of investigation, most particulate organic carbon was quite appealing for filter feeding communities, although the best POM quality was available during phytoplankton blooming. the phytoplankton pool of suspended matter was just a small fraction of the bulk, accounting for only 13% on average of particulate organic carbon. in terms of energy available in the seston, the highest amount was stored in organic matter heterotrophic fraction, whilst the smallest was to be found in living phytoplankton.  相似文献   

14.
High-frequency fluctuations due to wavefocusing are prominent characteristics of light in shallow marine environments. Effects of high-frequency (0.01 to 1 Hz) fluctuating light on growth rates of the red algaChondrus crispus Stackh., collected from Crane Neck Point, New York, USA, during July 1988, were determined by comparing plants grown under fluctuating and constant light regimes with similar daily irradiances. At high daily irradiance, growth rates were higher under fluctuating light than under constant light. Fluctuating light effects were frequency-dependent; growth was enhanced by fluctuations at 0.1 and 1 Hz, but not by fluctuations at 0.01 Hz. At low daily irradiance, growth rates were not affected by fluctuating light at any frequency tested. Enhancement of growth was not due to effects of high-frequency light fluctuations on photoacclimation responses ofC. crispus. Plants grown under fluctuating light at high daily irradiance actually exhibited lower photosynthetic capacity and efficiency (determined under constant light) than plants grown under constant light. These differences were attributable to variation in the density of Photosystem II reaction centers, which was low in plants grown under fluctuating light. Maximum turnover rate of whole-chain electron transport and activity of ribulose-1,5-bisphosphate carboxylase were affected by total daily irradiance, but not by high-frequency light fluctuations. Enhancement of growth under fluctuating light was partly attributable to reduced rates of dark respiration compared to rates of plants grown under constant light. The results also provided indirect evidence that high-frequency light fluctuations may enhance instantaneous photosynthetic rates. This effect could increase daily carbon gain and, therefore, stimulate growth ofC. crispus under high-frequency light fluctuations.  相似文献   

15.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

16.
An automatic recording apparatus for measuring the filtration rate in suspension-feeding bivalves is described. The concentration of algae in the experimental medium is kept constant throughout each experiment by addition of Phaeodactylum tricornutum from a chemostat. Within the range of body size 5.7 to 283 mg (W=dry weight of tissues), the filtration rate (F=ml min-1) at 15°C in Mytilus edulis L. follows the allometric equation F=0.85 W 0.72. Within the concentrations 0.18 to 0.70 mg algal dry weight l-1, the filtration rate in mussels of 132 mg dry flesh weight ranges from 33.1 to 41.0 ml min-1. At 0.18 mg algal dry weight l-1 the mussels filter continuously for 20 h, with a high constant rate that presumably represents the water transport capacity under optimal laboratory conditions.  相似文献   

17.
Resource availability may affect both individual fitness and population demography and the effects can interact. We used two experiments to test how breeding resource abundance and its spatial distribution, combined with female abundance, affected male reproductive behavior, population spawning rate, and embryo development and recruitment in the European bitterling (Rhodeus amarus), a small cyprinid fish that lays its eggs in living unionid mussels. In the first experiment, we found that at the population level the abundance of breeding resources (freshwater mussels) was more important for bitterling recruitment than resource spatial distribution (clumped or regular). In contrast at the individual level, (variability in reproductive success) the spatial distribution of resources was more important, but only when resource abundance was not limiting. Territorial males obtained almost exclusive access to fertilizations when resources were abundant and distributed regularly, but were unable to defend large clusters of resources (when rival abundance was always high) and abandoned territoriality. Surprisingly, territorial males remained aggressive and successfully defended their territories when resources were grouped into a single cluster, but at a low abundance. In the second experiment, more rapid embryo development and larger juvenile body size at the end of the growing season was detected at high resource abundance and low female abundance, indicating that early hatched juveniles survived better and hence investment in offspring production early in the season yields a higher fitness pay-offs. The abundance of females in spawning condition was the best overall predictor of the intensity of male reproductive behavior in both experiments.  相似文献   

18.
In a short-term (162 h) accumulation experiment with mussels Mytilus edulis exposed to 100 ppb Cd and fed algal cells (Phaeodactylum tricornutum) in 1986, it was found that uptake via food played an insignificant role compared to direct uptake from ambient water (19 S). From measurements of the filtration rate and Cd uptake rate, it was estimated that the fraction of Cd taken up per liter of water filtered was about 0.15%. The initial uptake of Cd was linear with time and about three times higher in fed than in starved mussels. From the measured uptake of Cd in starved mussels collected in 1982 and exposed to 10, 100 and 200 ppb in long-term experiments (up to 242 d), it was found that the Cd Accumulation rate was not linear with time, and that the Cd uptake was not directly proportional with the exposure concentration. Values as high as 100 to 1 300 ppm Cd (dry wt of soft parts) were measured. It was found that the Cd elimination rate was not directly proportional with the Cd body burden in long-term exposed mussels, thus indicating that a certain fraction of Cd may have been immobilized to metallothioneins.  相似文献   

19.
J. Marra 《Marine Biology》1978,46(3):191-202
Parameters of photosynthesis and growth were measured for a marine diatom (Lauderia borealis) grown in axenic continuous culture under three different light regimes: constant, simulated diurnal variation, and fluctuating. The light fluctuations were systematic increases and decreases in light intensity superimposed on the diurnal regime. In the first two regimes, a morning maximum and an afternoon depression in photosynthesis were observed. In the fluctuating light regime, the afternoon depression was less pronounced and the morning maximum was enhanced. The results may be explained by postulating a time-dependent value for the light-saturated rate of photosynthesis. Light utilization [mmol O2 cell-1 (E m-2)-1] was the same for the diurnally varying and fluctuating regimes, despite the fact that the peak light intensity in the fluctuating regime was double that of the diurnally varying regime.  相似文献   

20.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号