首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

2.
The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84–3.12 mg/kg for Pb, 0.26–0.46 mg/kg for Cd, 9.19–24.70 mg/kg for Zn, and 1.46–1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62–0.69 mg/kg for Pb, 0.67–0.78 mg/kg for Cd, 0.84–1.00 mg/kg for Zn, and 1.26–1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes.  相似文献   

3.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

4.
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg?1, respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg?1, respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg?1). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg?1, respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.  相似文献   

5.
Tributyltin chloride (TBTC)- and lead-resistant estuarine bacterium from Mandovi estuary, Goa, India was isolated and identified as Aeromonas caviae strain KS-1 based on biochemical characteristics and FAME analysis. It tolerates TBTC and lead up to 1.0 and 1.4 mM, respectively, in the minimal salt medium (MSM) supplemented with 0.4 % glucose. Scanning electron microscopy clearly revealed a unique morphological pattern in the form of long inter-connected chains of bacterial cells on exposure to 1 mM TBTC, whereas cells remained unaltered in presence of 1.4 mM Pb(NO3)2 but significant biosorption of lead (8 %) on the cell surface of this isolate was clearly revealed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. SDS-PAGE analysis of whole-cell proteins of this lead-resistant isolate interestingly demonstrated three lead-induced proteins with molecular mass of 15.7, 16.9 and 32.4 kDa, respectively, when bacterial cells were grown under the stress of 1.4 mM Pb (NO3)2. This clearly demonstrated their possible involvement exclusively in lead resistance. A. caviae strain KS-1 also showed tolerance to several other heavy metals, viz. zinc, cadmium, copper and mercury. Therefore, we can employ this TBTC and lead-resistant bacterial isolate for lead bioremediation and also for biomonitoring TBTC from lead and TBTC contaminated environment.  相似文献   

6.
This study assessed the level of heavy metal in roadside dust and PM2.5 mass concentrations along Thika superhighway in Kenya. Thika superhighway is one of the busiest roads in Kenya, linking Thika town with Nairobi. Triplicate road dust samples collected from 12 locations were analysed for lead (Pb), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), and copper (Cu) using atomic absorption spectrophotometry (AAS). PM2.5 samples were collected on pre-weighed Teflon filters using a BGI personal sampler and the filters were then reweighed. The ranges of metal concentrations were 39–101 μg/g for Cu, 95–262 μg/g for Zn, 9–28 μg/g for Cd, 14–24 μg/g for Ni, 13–30 μg/g for Cr, and 20–80 μg/g for Pb. The concentrations of heavy metals were generally highly correlated, indicating a common anthropogenic source of the pollutants. The results showed that the majority of the measured heavy metals were above the background concentration, and in particular, Cd, Pb, and Zn levels indicated moderate to high contamination. Though not directly comparable due to different sampling timeframes (8 h in this study and 24 h for guideline values), PM2.5 for all sites exceeds the daily WHO PM2.5 guidelines of 25 μg/m3. This poses a health risk to people using and working close to Thika superhighway, for example, local residents, traffic police, street vendors, and people operating small businesses. PM2.5 levels were higher for sites closer to Nairobi which could be attributed to increased vehicular traffic towards Nairobi from Thika. This study provides some evidence of the air pollution problem arising from vehicular traffic in developing parts of the world and gives an indication of the potential health impacts. It also highlights the need for source apportionment studies to determine contributions of anthropogenic emissions to air pollution, as well as long-term sampling studies that can be used to fully understand spatiotemporal patterns in air pollution within developing regions.  相似文献   

7.
Aflatoxins are toxic fungal metabolites found in foods and feeds. Aflatoxin M1 (AFM1), a metabolite of the potent carcinogen aflatoxin B1 (AFB1), occurs in milk from animals consuming feed contaminated with AFB1. The aim of this study was to investigate the occurrence and levels of AFM1 in ultra-high temperature (UHT) milk and infant formula samples consumed in Burdur City. During 2011, 41 samples of UHT milk and 33 samples of infant formula were randomly collected from different supermarkets and drug stores. The occurrence and contamination levels of AFM1 in the samples were investigated using the competitive enzyme-linked immunoabsorbent assay (ELISA) method. AFM1 was detected in 30 samples (73.2 %) in concentrations ranging from 6.42 to 71.33 ng/L (mean level, 17.76 ng/L). Altogether, only three (7.3 %) samples of UHT milk were contaminated at levels above the Turkish legal limit (50 ng/L). However, AFM1 was not detected in all infant formula samples. It is concluded that despite the widespread occurrence of AFM1 in UHT milk samples, the contamination levels were not serious for public health.  相似文献   

8.
The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu?>?Pb?>?Cd?>?Zn?>?Ni?>?Mn. The mean value of the joint distribution coefficient (K dΣsp) was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg?1 for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K dΣsp in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.  相似文献   

9.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   

10.
Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg?1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg?1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg?1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.  相似文献   

11.
Conversion of broad-spectrum organic waste into carbonaceous biochar has gained enormous interest in past few years. The present study aims to characterize feedstock (FS), i.e. bagasse (Bg), bamboo (Bm) and biochar (BC), i.e. baggase biochar (BBg), bamboo biochar (BBm) and tyre biochar (Ty). Significant changes in elemental composition, atomic ratio, proximate analyses, mineral content and heavy metal content were observed which was well supported by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. Impregnation with ferric hydroxide was done, and resultant modified biochars (MBC), i.e. iron-impregnated baggase biochar (FeBBg), iron-impregnated bamboo biochar (FeBBm) and iron-impregnated tyre biochar (FeTy), along feedstock and biochar were used for PO4 3?, Pb, Hg and Cu adsorption. In general, BBg, FeBBg, BBm, FeBBm, Ty and FeTy were found to adsorb PO4 3?, Pb, Hg and Cu better than Bg and Bm, except in few cases. Results from adsorption experiments were fitted into Langmuir, Freundlich and Temkin models of isotherms and pseudo-first-order, pseudo-second-order and Elovich models of kinetics. Result of batch study adsorption revealed that maximum adsorption of PO4 3?, Pb, Hg and Cu was done by FeBBg (adsorption mechanism explained by Freundlich model), FeTy (Temkin model), Ty (Langmuir model) and BBm (Langmuir model) respectively. According to R 2 values, pseudo-first-order reaction was well suited to PO4 3?, Pb, Hg and Cu adsorption. The optimum pH for maximum adsorption was observed to be 7.4 for PO4 3?, 5 for Cu and 6 for Pb and Hg respectively  相似文献   

12.
Ambient air samples were collected at two different locations between 2011 and 2012 in Zhengzhou, China in order to assess the concentration level, health risks, as well as the sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM2.5). The mean annual levels of PM2.5 observed at industry site and residential site were 172?±?121 and 160?±?72 μg m?3, respectively, which were about five times the annual value of proposed PM2.5 standard (35 μg m?3) in China. The PM2.5 in all daily samples (n?=?47) exceeds the proposed PM2.5 standard in China (75 μg m?3) at both industrial and residential sites. Seasonal variations of PM2.5 showed a clear trend of winter?>?autumn?>?spring?>?summer at both sites. The total concentrations of 16 PM2.5-associated PAHs ranged from 61?±?51 to 431?±?281 and 38?±?25 to 254?±?189 ng m?3, with mean value of 176?±?233 and 111?±?146 ng m?3 at industry and residential sites, respectively. The major species were fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, and the concentration levels of PAHs in PM2.5 were higher in winter than those of other seasons at both sites. The annual mean values of toxicity equivalency concentrations of ∑16PAHs in PM2.5 were 22.8 and 13.5 ng m?3 in industry and residential area, respectively. In this study, the risk level of adult citizens through inhalation exposure to PAHs was calculated. The average estimates of lifetime inhalation cancer risks were approximately 8.9?×?10?7 and 6.3?×?10?7 for industry and residential sites, respectively. The main sources of 16 PAHs from both diagnostic ratios and principle component analysis identified as vehicular emissions and coal combustion.  相似文献   

13.
14.
The ability of cadmium uptake by metal-resistant yeast, Candida tropicalis, from the liquid medium and wastewater was evaluated. The minimum inhibitory concentration of Cd2?+? against C. tropicalis was 2,500 mg L???1. The yeast also showed tolerance toward Zn2?+? (1,400 mg L???1), Ni2?+? (1,000 mg L???1), Hg2?+? (1,400 mg L???1), Cu2?+? (1,000 mg L???1), Cr6?+? (1,200 mg L???1), and Pb2?+? (1,000 mg L???1). The yeast isolate showed typical growth curves, but lag and log phases extended in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 8. The metal processing ability of the isolate was determined in a medium containing 100 mg L???1 of Cd2?+?. C. tropicalis could decline Cd2?+? 70%, 85%, and 92% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2?+? 40% and 78% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and nonprotein thiol levels by 135% and 134% at 100-mg L???1 concentration, respectively. An increase in the synthesis of GSH is involved in metal tolerance, and the presence of increasing GSH concentrations may be a marker for high metal stress in C. tropicalis. C. tropicalis, which is resistant to heavy metal ions and is adaptable to the local environmental conditions, may be employed for metal detoxification operations.  相似文献   

15.
Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830?±?19.6 mgkg?1 dw and 6,950?±?68.3 mgkg?1 dw (exceeding DPR set limits) and 11.3?±?0.04 mgkg?1 dw and 186?±?0.02 mgkg?1 dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.  相似文献   

16.
The short-term responses of H2O2-depletion-related parameters in moss Hypnum plumaeforme to the combined stress induced by Pb and Ni were investigated. The results showed that the Pb and Ni stress induced dose-dependent accumulation of hydrogen peroxide (H2O2). The increase of peroxidase (POD) activity and decrease of ascorbate peroxidase (APX) activity were observed under the combined heavy metal application. The antioxidants, ascorbate (AsA) and proline content, increased significantly when the metals were applied together. The study indicated that the cell damage caused by Pb stress was higher than that caused by Ni stress, Pb and Ni had synergistic effect in inducing the oxidative stress in moss H. plumaeforme, especially under the combination of high concentration of Ni (0.1 and 1.0 mM) and Pb. Content of proline, H2O2 and the activity of POD, all showed a dose-dependent increase under Pb and Ni stress, suggesting their practical value as biomarkers in moss biomonitoring, especially in the case of light pollution caused by heavy metals without the changes in the appearance of mosses.  相似文献   

17.
This study assessed the heavy metal (Cr, Mn, Ni, Cu, Zn, and Pb) uptake and its effect on biochemical parameters in Paspalum distichum, a wetland plant. Sludge collected from Bhalswa waste dump, New Delhi, was used as heavy metal source and dosed in different proportions viz. 20%, 40%, 60%, and 80% to the garden soil. The plants accumulated metals mostly in belowground organs. The metal accumulation followed the order: Cr>Mn>Cu>Zn>Ni>Pb. The range of heavy metal concentration in tissue of belowground organs after 180 days of growth was 1,778.65–4,288.01 ppm Cr, 828.11–1,360 ppm Mn, 236.52–330.07 ppm Ni, 155.79–282.35 ppm Cu, 27.05–91.16 ppm Zn, and 27.09–50.87 ppm Pb. The biochemical parameters viz. chlorophyll and protein contents and peroxidase (POD) activity exhibited no considerable adverse effect indicating the plants’ tolerance towards heavy metals. The high POD activity and synthesis of new protein bands at high sludge-dosed plants were also in support of this fact.  相似文献   

18.
Considering the human health risk due to the consumption of foodstuffs, the concentrations of heavy metals (lead, manganese, chromium, cadmium, and arsenic) are investigated in vegetables, fruits, and fish species collected from the central market (called Shaheb Bazar) of Rajshahi City, Bangladesh. The foodstuffs examined for metal constituents are the basis of human nutrition in the study area. The highest concentrations of Mn and As in vegetables (onion and pointed gourd, respectively), Cr and Cd in fruits (black berry and mango, respectively), and Pb in fish (catla) are recorded. Health risks associated with these heavy metals are evaluated due to dietary intake. Target hazard quotient (THQ) and hazard index (HI) are calculated to evaluate the non-carcinogenic health risk from individual and combined heavy metals. The THQ values for individual heavy metals are below 1, suggesting that people would not experience significant health risks if they ingest a single heavy metal from one kind of foodstuff (e.g., vegetables). However, consumption of several of the foodstuffs could lead a potential health risk to human population since HI value is higher than 1. The relative contributions of vegetables, fishes, and fruits to HI are 49.44, 39.07, and 11.53 %, respectively. Also, the relative contributions of Pb, Cd, As, Mn, and Cr to HI are 51.81, 35.55, 11.73, 0.85, and 0.02 %, respectively. The estimation shows that the carcinogenic risk of arsenic exceeds the accepted risk level of 1?×?10?6. Thus, the carcinogenic risk of arsenic for consumers is a matter of concern.  相似文献   

19.
The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu?≈?Pb?>?Ni?≈?Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04–1.19, 0.03–0.12, and 0.01–0.09 μg/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future.  相似文献   

20.
The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO4 2?, PO4 2?, CO3 2?) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号