首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holland  N. D.  Leonard  A. B.  Meyer  D. L. 《Marine Biology》1991,111(1):113-119
The movement and digestion of food in the gut ofOligometra serripinna (Carpenter) were studied at Lizard Island (14°3842S; 145°2710E) in the austral winter of 1986. Feather stars in the laboratory were fed a brief, small meal of brine shrimp nauplii and killed at increasing time intervals thereafter. Histological reconstructions showed that the ingested nauplii progressed along the digestive tract surprisingly quickly. Some nauplii were found in the mid and hind intestine in only 30 min, and all of the nauplii had reached the hind intestine and rectum in 1 h. Digestion of the nauplii had started at 1 h, and only a few fragments of naupliar exoskeleton remained in the hind intestine and rectum 5 h after the start of feeding. Videotape analysis showed that no fecal pellets were released during this experiment. In the natural environment ofO. serripinna, ingested particles may similarly be transported quickly to the hind part of the gut and digested there — when feather stars were fixed in the field, most of the gut contents were found in the hind intestine and rectum.O. serripinna, which efficiently rejects inert particles before they are ingested, usually defecates infrequently (probably not more than once over a span of many hours) and differs from some other feather stars that ingest numerous inert particles and defecate much more frequently. When specimens ofO. serripinna were fed continuously on brine shrimp nauplii,Artemia sp. (San Francisco strain), in the laboratory, the feather stars fed gluttonously, packing their guts with several hundred nauplii in 1 to 2 h. Thereafter, superfluous feeding began (i.e., further ingestions appeared to force undigested nauplii, some of them still living, out of the anus). These observations suggest thatO. serripinna usually feeds at relatively modest rates in its natural habitat, but can feed gluttonously to take advantage of infrequent patches of highly concentrated, nutritious particles (e.g. copepod swarms, migrating demersal zooplankton, and invertebrate gametes from mass spawnings). It is likely that such patches of nutritious particles are usually small enough to drift out of reach of the feather stars before gluttonous feeding proceeds to superfluous feeding. Opportunities for superfluous feeding in nature are probably very infrequent (e.g. ingestion of coral gametes and embryos after a mass spawning), and the feather stars evidently have no behavior that stops further ingestions after the gut becomes filled to capacity.  相似文献   

2.
Suspension feeding by a stalkless crinoid (Oligometra serripinna) was studied at Lizard Island, Australia, in 1985. The crinoids were placed in a laboratory flume with a slow, unidirectional current of seawater. Nutritive and non-nutritive particles (15 to 180 m) were introduced upstream from the crinoid, and feeding behavior was recorded at high magnifications on videotape for frame analysis. These direct observations showed that each intercepted particle (whether a dejellied clam egg, Sephadex bead or latex sphere) contacts a single, evidently adhesive tube foot and is rapidly transferred to the pinnular food groove by a bend of the tube foot. The tube foot bends in about 0.1 s and returns to its extended position in 1 to 2 s. Spheres less than 20 m in diameter cause only the intercepting tube foot to bend. In contrast, larger spheres cause the coordinated bending of the intercepting tube foot plus many of the neighboring tube feet: the stimulus spreads through the reacting group of tube feet at about 1 cm s-1. After transfer to the pinnular food groove, the nutritive particles (dejellied clam eggs) travel at about 1 cm min-1 to the arm axis and thence down the arm food groove at about 4 cm min-1 to the mouth; in contrast, non-nutritive particles (Sephadex beads and latex spheres) are discarded from the pinnular food groove between 1 and 30 s after capture. Tube-foot bending is presumably triggered when arriving particles (whether nutritive or non-nutritive) are detected by sensory cells in the tubefoot epithelium: mechanoreception by itself appears sufficient to initiate bending, although chemoreception may modify the reaction. Then, soon after captured particles have been transferred to the pinnular food groove, the crinoid discards those judged unsuitable (probably by contact chemoreceptors in the food-groove epithelium). Clam eggs with intact jelly layers temporarily hang up on tube feet they contact and then float away in the curent: the jelly evidently interferes with mechanoreception and/or chemoreception by the tube-foot epithelium. Some previous studies of crinoid feeding have suggested that particles are trapped in extensive nets or strands of mucus: we found no evidence for this in O. serripinna, which captures particles predominantly be the direct interception method of the aerosol filtration model.  相似文献   

3.
The gut contents of specimens of the temperate crinoid Antedon bifida (Pennant) were collected from Dalkey, County Dublin, at monthly intervals for 1 yr, and occasionally from other areas around the Irish coast. Quantitative analysis showed the main components to be detritus (65%), plankton (18%) and inorganic particles (17%). This composition was remarkably constant throughout the year and at all locations, the main variation being in the plankton which was at a minimum in February (4%) and reached a maximum in August (36%). Food particle collection appeared to be nonselective within the appropriate size group, the essential feature of a particle being that it would fit into the ambulacral groove. Fragile planktonic diatoms and dinoflagellates, which occurred in blooms in summer and autumn, were digested by A. bifida, but more robust diatoms passed intact through the gut. Histochemical investigations indicate that the bulk of the detritus is refractory, and it is suggested that its associated micro-flora and micro-fauna may be a major source of nutriment for this crinoid.  相似文献   

4.
We describe the first molecular and morphological analysis of extant crinoid high-level inter-relationships. Nuclear and mitochondrial gene sequences and a cladistically coded matrix of 30 morphological characters are presented, and analysed by phylogenetic methods. The molecular data were compiled from concatenated nuclear-encoded 18S rDNA, internal transcribed spacer 1, 5.8S rDNA, and internal transcribed spacer 2, together with part of mitochondrial 16S rDNA, and comprised 3,593 sites, of which 313 were parsimony-informative. The molecular and morphological analyses include data from the bourgueticrinid Bathycrinus; the antedonid comatulids Dorometra and Florometra; the cyrtocrinids Cyathidium, Gymnocrinus, and Holopus; the isocrinids Endoxocrinus, and two species of Metacrinus; as well as from Guillecrinus and Caledonicrinus, whose ordinal relationships are uncertain, together with morphological data from Proisocrinus. Because the molecular data include indel-rich regions, special attention was given to alignment procedure, and it was found that relatively low, gene-specific, gap penalties gave alignments from which congruent phylogenetic information was obtained from both well-aligned, indel-poor and potentially misaligned, indel-rich regions. The different sequence data partitions also gave essentially congruent results. The overall direction of evolution in the gene trees remains uncertain: an asteroid outgroup places the root on the branch adjacent to the slowly evolving isocrinids (consistent with palaeontological order of first appearances), but maximum likelihood analysis with a molecular clock places it elsewhere. Despite lineage-specific rate differences, the clock model was not excluded by a likelihood ratio test. Morphological analyses were unrooted. All analyses identified three clades, two of them generally well-supported. One well-supported clade (BCG) unites Bathycrinus and Guillecrinus with the representative (chimaeric) comatulid in a derived position, suggesting that comatulids originated from a sessile, stalked ancestor. In this connection it is noted that because the comatulid centrodorsal ossicle originates ontogenetically from the column, it is not strictly correct to describe comatulids as unstalked crinoids. A second, uniformly well-supported clade contains members of the Isocrinida, while the third clade contains Gymnocrinus, a well-established member of the Cyrtocrinida, together with the problematic taxon Caledonicrinus, currently classified as a bourgueticrinid. Another cyrtocrinid, Holopus, joins this clade with only weak molecular, but strong morphological support. In one morphological analysis Proisocrinus is weakly attached to the isocrinid clade. Only an unusual, divergent 18S rDNA sequence was obtained from the morphologically strange cyrtocrinid Cyathidium. Although not analysed in detail, features of this sequence suggested that it may be a PCR artefact, so that the apparently basal position of this taxon requires confirmation. If not an artefact, Cyathidium either diverged from the crinoid stem much earlier than has been recognised hitherto (i.e., it may be a Palaeozoic relic), or it has an atypically high rate of molecular evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Thorpe, Port Erin  相似文献   

5.
Histological examinations of the gonads of Promachocrinus kerguelensis Carpenter, 1888 collected in November 1984 from McMurdo Sound, Antarctica, revealed ripe ovaries containing three distinct size classes of oocytes: 20 to 90, 91 to 150 and 151 to 180 m diameter as well as ova. Testes were ripe, and filled with mature sperms. There was marked inter-pinnule and inter-individual synchrony of gametogenesis and spawning is probably synchronous, at least within the sub-population sampled. The number of eggs per pinnule is allometrically related to body size. Body weight and arm length are positively correlated with total egg number. Annual fecundity was estimated to be 29 000 eggs (full-grown oocytes and ova) for a crinoid weighing 53.6 g wet weight with an arm length of 16.3 cm. The eggs float. Female genital pinnules contain more lipid and energy than male pinnules. Reproductive output and effort (23.4 to 65.2 kJ and 26 to 38%, respectively) increase with body size and are similar to values reported for other echinoderms with lecithotrophic larvae. The greatest overall energetic contribution is represented by the arms and genital pinnules. Spawning in P. kerguelensis probably occurs in November and December within McMurdo Sound. If development is slow, as in all other antarctic echinoderms studied to date, then settlement most likely occurs 2 to 3 mo later, after the short summer period of high phytoplankton productivity. High fecundity, a pelagic mode of reproduction, and the high probability of a slow rate of development may contribute to the wide geographic distribution of this common antarctic crinoid.  相似文献   

6.
7.
Reproduction and larval/post-larval development of the one of the smallest known comatulid Dorometra sesokonis were studied on the coral reefs of Sesoko-jima Island, Okinawa, Japan. Breeding individuals were found every month from May 2003 to April 2004 indicating continuous reproduction. Individuals possessed both mature ovaries and testes, and were therefore characterized as simultaneous hermaphrodites. This species was observed to be an external brooder in which the embryos developed on the surface of parental genital pinnules until the doliolaria larval stage, and subsequently released doliolariae settled on substrata within 4 days after hatching. Larvae then metamorphosed into the post-larval cystidean stage, which lasted for more than a month. The reproductive features of this species are unique among crinoids, and, together with juvenile morphological features observed in adults, can be interpreted as adaptations to their cryptic habitat, which is subject to frequent natural disturbances.  相似文献   

8.
J. Shimeta 《Marine Biology》1996,126(3):479-488
Pseudopolydora paucibranchiata Okuda suspension feeds and deposit feeds at the sediment-water interface, where it is exposed to a variety of particles differing in physical characteristics and nutritional value. In flume experiments (conducted in August 1994 and May 1995) with two sizes of either suspended or deposited beads, I measured particle-size selection separately in each feeding mode. The same influences of palp width and of ambient flow speed were observed in each mode. At velocities 0.74 cm s-1 there were no relationships between palp width and the proportion of gut contents composed of large beads. At velocities 1.8 cm s-1 worms with narrower palps ingested relatively fewer large beads (and more small beads) than did worms with wider palps. Palp width and body length were linearly related, and results were similar when analyzed with body length as the independent variable. As flow speed increased, selectivity changed in a worm-size-specific manner: worms with a palp width -1. Assuming that in the field (1) particle size is the principle criterion for selection, and (2) the amount of digestible food component in deposited and suspended particles, respectively, is related to particle surface area and volume, I hypothesize that changes in selectivity as velocity rises can cause juveniles to experience a decreasing profitability of suspension feeding and a simultaneously increasing profitability of deposit feeding. Juveniles could maintain a diet of high food value despite flow variations by adjusting the proportion of time they spend suspension feeding relative to deposit feeding.  相似文献   

9.
Crinoids have been diverse organisms in marine epifaunal filter feeding communities at any level of tiering above the substrate since they appeared in the Ordovician. Feeding is regarded as the most important factor in producing the crinoid tiering, which is primarily defined by stalk length. The gut contents of five sympatric crinoid species (three isocrines and two comatulids) were observed, and these were compared with the stalk length and the fan density. We have classified these crinoid species into four groups based on the stalk length and fan density, e.g., long stalk with low fan density, long stalk with high fan density, short stalk with low fan density, and short stalk with high fan density. In the gut contents, diatom crusts were found mainly from species with longer stalks, and chlorophyll-like fluorescent material were only detected from the groups with a shorter or no stalk. The group with lower fan density contained more inorganic particles than the group with higher fan density. Therefore, the gut contents and their amounts depend on their stalk lengths and their fan densities. The results imply that diversified morphologies in the crinoids have evolved through adaptations to different ecological factors such as difference in their diets.  相似文献   

10.
At 33 salinity a tissue stump formed 2 to 3 d after autotomy and developing ossicles were present by the fourth day inOphiothrix angulata (Say). Regeneration proceeded rapidly from the sixth day until the thirteenth day, when the rate decreased greatly. The length of the regenerated arm and the number of ossicles formed did not vary over a salinity range of 28 to 38 S, but were significantly less at 23 S. The number of ossicles regenerated increased linearly (y=1.9 x-7.7;r=0.9089) with the calcium concentrations ranging from 3.8 to 9.5 mM. No ossicle formation occurred at 3.8 mM calcium concentration. Rate of net uptake of calcium-45 into the ossicles of intact individuals in salinities of 28 and 33 was significantly greater than that in 23 and 38 S. However, net uptake rate of calcium into the soft tissues of the arms was significantly higher at 18S than at the lower two salinities.  相似文献   

11.
Clibanarius longitarsus (De Haan), a hermit crab, feeds by means of both micro- and macrofeeding. Microfeeding is of two types: filter feeding and deposit feeding. In macrofeeding, the animal depends mainly on green algae, barnacles and some worms, etc. In filter feeding, the hermit crab uses its paired antennules for trapping microorganisms drawn into the water current created by the second and third maxillipeds; the antennae do not play any role in filter feeding. In deposit feeding, the hermit crab uses its chelae as well as pereiopods for toughing and obtaining detritus food material. In macrofeeding, the organism employs sharp chelae to collect small pieces of muscle from barnacles and then transfer them to the inner mouth parts. In algal feeding, the chelae as well as maxillipeds help in collecting and moving food material towards the mouth. In this investigation functional organisation ofC. longitarsus mouth parts was studied in detail with reference to the various feeding mechanisms, in specimens collected from the intertidal region of Bheemunipatnam, Andra Pradesh, India, in 1988 and 1989.  相似文献   

12.
Adults of the sea urchin Arachnoides placenta (L.) were induced to spawn, and eggs were fertilized at 28°C in September 1989. After 5 min, eggs were transferred to 28, 31, 34, or 37°C and reared to metamorphosis. Embryos were observed at 20-min intervals during the first 2 h; larvae were observed daily. The cleavage was higher at higher temperatures. Embryos reared at 28°C were still at the 4th cleavage (16-cell stage) after 100 min, while those at 34°C had reached the 5th cleavage (32-cell stage). All embryos reared at 37°C died on the second day. Incidence of abnormality was 20 to 30% at 28 and 31°C, 48% at 34°C, and 77% at 37°C. The 8-arm stage was reached after 4 d at 28°C, 3 d at 31°C and 2 d at 34°C. Larvae displayed decreasing body length and arm length with increasing temperature. Larvae at 31°C have relatively long arms, as a result of a decrease in body length, not because of increased arm length. Incidence of metamorphosis was 43.9±1.7% (mean/plusmn;SD) at 28°C, 24.5±1.9% at 31°C, and 5.3% at 34°C. The size of metamorphosed juveniles was significantly larger at 28°C than at 31 and 34°C. Temperatures of 31°C negatively affect larvae and juveniles of the sand dollar.  相似文献   

13.
Aspects of feather star behavior and ecology were recorded by time-lapse cinematography approximately 1 frame min-1 on the Great Barrier Reef, Australia over a 1 mo period in 1983. The current regime influenced body postures of most species studied, whether nocturnal or not. Moreover, feather stars of several species crawled on the substratum with their arms; each crawling episode lasted roughly 10 min, and the maximum speed attained was about 1 arm length min-1. Nocturnal feather stars crawled to their nighttime feeding perches around dusk and crawled back to their daytime hiding places around dawn. Surprisingly, some species of feather stars living on the reef surface both day and night also crawled around at dawn and dusk for reasons that are not known. In the time-lapse films, and individual of Comanthus bennetti (sex undetermined) spawned for about 2 min just after dark on 5 July 1983. Another film showed possible predation on a feather star (Himerometra robustipinna) by a saddled coralfish (Chaetodon ephippium).  相似文献   

14.
Echinocardium cordatum (Pennant, 1777) were collected in Normandy, France, in March and November 1985. The grooved frontal ambulacrum of the burrowing echinoid E. cordatum functions in transferring surface sediment from the apex to the mouth of the echinoid. Particles that fall down the burrow's chimney accumulate between the spines of the apical tuft and are taken over by specialized groove spines. Due to the slope of the groove and the type of floor spines it harbours, four successive regions can be recognized, namely the adapical region, the fasciolar region, the ambital region, and the adoral region. As a general rule aboral floor spines (i.e. club-shaped, golf-club-shaped, and isodiametric spines) function in gathering particles while propelling them mouthwards; they simultaneously embed particles in a mucous string. The oral floor spines (i.e. spatulated spines) function in hauling and guiding the mucous string towards the peribuccal area of the echinoid. Once facing the peribuccal area, particles are picked up by the peribuccal tube feet that either transfer them into the esophagus or scrape them out against the peribuccal spines. Spine-retained particles are either sucked up by the pumping action of the esophagus or fall to the burrow's floor where the tube feet may pick them up again. Together the apical tuft, the frontal groove, and the peribuccal area form an efficient food-collecting system that transfers trapped surface particles from the echinoid apex down to the mouth. Compared to that of most other spatangoids the frontal ambulacrum of E. cordatum is highly specialized. Such specialization is related to colonization of fine sediment, as is the occurrence of a chimney linking the burrow to the sediment surface. Actually the burrow's chimney is the only route for oxygen and food supply; it acts as a real ecological umbilical cord for spatangoids buried in fine sediment.  相似文献   

15.
Exposure of Luidia clathrata (Say) to low salinity (17 S) results in a decrease in activity and rate of feeding, but has little effect on the absorption efficiency. Growth, as indicated by changes in body size and energy content of the body wall and pyloric caeca, is reduced in low salinity due to a decrease in feeding rate (energy consumption) and to a decrease in efficiency of utilization of material and energy absorbed. The low efficiency indicates that either additional energy is required for maintenance or energy is used inefficiently in low salinity. Thus, L. clathrata is limited energetically in low salinities, although it lives and reproduces there.  相似文献   

16.
This paper considers the potential role of the crinoid Leptometra phalangium as an indicator of highly productive areas along the shelf break that can sustain large biomasses of benthopelagic fish and recruits. The structure of fish assemblages in the central Mediterranean Sea (central-western coast of Italy), analysed on the basis of surveys carried out in summer and autumn from 1997 to 2001, revealed the presence of a well-defined group of species on the shelf break. This area, occurring at a depth of between 120 and 170 m, is characterised by detritic organogenic sediments colonised by the crinoid L. phalangium, a suspension-feeding macro-epibenthic species confined in the Mediterranean to the shelf-break area. Its abundance in the studied area can reach 12–15 ind. m–2. A total of 121 species belonging to 66 families of demersal organisms (crustacean decapods and stomatopods, cephalopods, selaceens and teleosteens) were caught at shelf-break stations from September to October. The species which typified the assemblage were the fishes Trisopterus minutus capelanus, Merluccius merluccius, Glossanodon leioglossus, Argentina sphyraena, Capros aper, Macroramphos scolopax and Lepidotrigla cavillone, the crustacean decapod Parapenaeus longirostris and the cephalopods Illex coindetii and Todaropsis eblanae. Detritic shelf-break stations showed a higher abundance of demersal organisms than stations distributed on muddy bottoms in the same depth range (100–200 m). Such differences appeared to be significant in September–October, when a clear increase in benthopelagic zooplanktivorus species, such as Glossanodon leioglossus, Trachurus trachurus, Trachurus picturatus, was found. The length structure of species occurring on the shelf break showed that for some of them the selection of this area is related to specific phases of their life cycle. Significant highest abundance of recruits and juveniles was observed for Merluccius merluccius, Helicolenus dactylopterus, Phycis blennoides, Parapenaeus longirostris and Capros aper in at least one of the two seasons. Similarly, an increased abundance of spawners of red mullet Mullus barbatus and four-spotted megrim Lepidorhombus boscii was observed on the shelf break. Results of this study may have important consequences for management of fish stocks and assemblages in the central Mediterranean. The co-occurrence of high densities of L. phalangium and benthopelagic fish, occurring mainly with juveniles and spawners, strongly indicates a potential role of L. phalangium as an indicator of highly productive areas around the shelf break. Such areas appear to play a major role in the production of some of the most abundant and commercially important fish species, such as the Mediterranean hake and red mullet.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

17.
Arm tissues from species of brittlestars from the British Isles and North America were examined by light and electron microscopy for the presence of sub-cuticular bacteria (SCB) which were recorded in 17 of the 19 species studied. Three major groups of SCB could be distinguished on the basis of their morphology. The bacterial morphology was not correlated with the host ecology but did appear to be related to the phylogeny of the hosts. Ophiuroids of the same genera had morphologically similar SCB and this was also generally true of species from the same family. This indicates the possibility of co-evolution between the SCB and their hosts. Estimates of SCB load were made for 9 of the species by direct counting and by quantifying the amount of bacterial endotoxin present in the host tissues. SCB numbers varied interspecifically from 3.7×108 to 4.6×109 SCB per gram of ash-free brittlestar arm tissue. Endotoxin values ranged from 5.97 to 285 g g–1 ash-free arm tissue. Calculations suggest that SCB form at least 0.1 to 1% of the total biomass of the arm tissues. There was considerable intraspecific variation in SCB load. The possible role and significance of SCB is discussed.  相似文献   

18.
The acid-base status of two sea urchins, Psammechinus miliaris (Gmelin) and Echinus esculentus (L.) during experimental emersion has been investigated. Sea urchins were collected from the Firth of Clyde between August and September 1987. The carbon dioxide capacity of the coelomic fluid of P. miliaris was greater than that of E. esculentus, although both were low and only marginally greater than that of sea water. The pH of the coelonic fluid was also low (7.05 to 7.17) and was influenced mainly by the internal partial pressure of CO2 (PCO 2). Acid-base disturbance in the coelomic fluid of both species during emersion, although minimal, was more pronounced in E. esculentus than in P. miliaris and was due primarily to an increase in the internal PCO 2, although there was an increase in the concentration of L-lactate in the coelomic fluid of E. esculentus. The coelomic fluid of both species was in a state of perfectly compensated respiratory acidosis. An increase in the concentration of divalent ions (Ca2+ and Mg2+) may be related to the dissolution of the test as a source of carbonate buffer.  相似文献   

19.
Observations on the subtidal seastar Pisaster brevispinus (Stimpson) indicate that this predator can extend the central tube feet into sand-mud substrate for a distance roughly equal to the radius of the seastar. Field and laboratory evidence demonstrates the use of the elongated tube feet by the asteroid for the capture of burrowed prey items. A relationship between predator size and the size of juveniles of the deep-burrowing clam Tresus nuttallii taken as prey is a product of the ability of larger seastars to extend the tube feet further into the substrate and capture deeper prey. The role of P. brevispinus as an important subtidal predator along the Pacific Coast of North America is discussed.  相似文献   

20.
In this work, a mathematical model on concentration distribution is developed for a steady, uniform open channel turbulent flow laden with sediments by incorporating the effect of secondary current through velocity distribution together with the stratification effect due to presence of sediments. The effect of particle-particle interaction at reference level and the effect of incipient motion probability, non-ceasing probability and pick-up probability of the sediment particles at reference concentration are taken into account. The proposed model is compared with the Rouse equation as well as verified with existing experimental data. Good agreement between computed value and experimental data indicates that secondary current influences the suspension of particles significantly. The direction and magnitude (strength) of secondary current lead to different patterns of concentration distribution and theoretical analysis shows that type II profile (where maximum concentration appears at significant height above channel bed surface) always corresponds to upward direction and greater magnitude of secondary current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号