首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated fly ash/slag blended cement   总被引:2,自引:0,他引:2  
This paper presents the results of the preparation of an ecological cementing material from granulated blast-furnace slag (GBFS) and Class C fly ash (CCFA). The desulphurization gypsum, calcined at 600–800 °C for 0.5–1.5 h, works as the main ingredient of the activator in the cementing material. The optimized formulation of the cementing material was obtained with the aid of factorial design method: slag, 70%; CCFA, 18%; activator, 12%. The “partial super-fine grinding process” was adopted to improve the performance, i.e., 85% of the mixture is ground to Blaine fineness of 3500 cm2/g, 15% further ground to around 5000 cm2/g. The compressive strength of 28 days of the cement mortar is up to 49 MPa and flexural strength 8.4 MPa. The hydration products, investigated by SEM and X-ray diffraction, are mainly ettringite and C–S–H gel.  相似文献   

2.
Solid fuels in chemical-looping combustion   总被引:1,自引:0,他引:1  
The feasibility of using a number of different solid fuels in chemical-looping combustion (CLC) has been investigated. A laboratory fluidized bed reactor system for solid fuel, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions, was used. In each reducing phase 0.2 g of fuel in the size range 180–250 μm was added to the reactor containing 40 g oxygen carrier of size 125–180 μm. Two different oxygen carriers were tested, a synthetic particle of 60% active material of Fe2O3 and 40% MgAl2O4 and a particle consisting of the natural mineral ilmenite. Effect of steam content in the fluidizing gas of the reactor was investigated as well as effect of temperature. A number of experiments were also made to investigate the rate of conversion of the different fuels in a CLC system. A high dependency on steam content in the fluidizing gas as well as temperature was shown. The fraction of volatiles in the fuel was also found to be important. Furthermore the presence of an oxygen carrier was shown to enhance the conversion rate of the intermediate gasification reaction. At 950 °C and with 50% steam the time needed to achieve 95% conversion of fuel particles with a diameter of 0.125–0.18 mm ranged between 4 and 15 min depending on the fuel, while 80% conversion was reached within 2–10 min. In almost all cases the synthetic Fe2O3 particle with 40% MgAl2O4 and the mineral ilmenite showed similar results with the different fuels.  相似文献   

3.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

4.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

5.
In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.  相似文献   

6.
A numerical study was conducted to predict pCO2 change in the ocean on a continental shelf by the leakage of CO2, which is originally stored in the aquifer under the seabed, in the case that a large fault connects the CO2 reservoir and the seabed by an earthquake or other diastrophism. The leakage rate was set to be 6.025 × 10−4 kg/m2/sec from 2 m × 100 m fault band, which corresponds to 3800 t-CO2/year, referring to the monitored seepage rate from an existing EOR field. The target space in this study was limited to the ocean above the seabed, the depth of which was 200 or 500 m. The computational domain was idealistically rectangular with the seabed fault-band perpendicular to the uniform flow. The CO2 takes a form of bubbles or droplets, depending on the depth of water, and their behaviour and dissolution were numerically simulated during their rise in seawater flow. The advection–diffusion of dissolved CO2 was also simulated. As a result, it was suggested that the leaked CO2 droplets/bubbles all dissolve in the seawater before spouting up to the atmosphere, and that the increase in pCO2 in the seawater was smaller than 500 μ atm.  相似文献   

7.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   

8.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

9.
Ash deposition is still an unresolved problem when retrofitting existing air-fired coal power plants to oxy-fuel combustion. Experimental data are quite necessary for mechanism validation and model development. This work was designed to obtain laboratory combustor data on ash and deposits from oxy-coal combustion, and to explore the effects of oxy-firing on their formation. Two bituminous coals (Utah coal and Illinois coal) and one sub-bituminous coal (PRB coal) were burned on a down-fired combustor under both oxy- and air-firing. Two oxy-fired cases, i.e., 27 vol% O2/73 vol% CO2 and 32 vol% O2/68 vol% CO2, were selected to match the radiation flux and the adiabatic flame temperature of air combustion, respectively. Once-through CO2 was used to simulate fully cleaned recycled flue gas. The flue gas excess oxygen was fixed at 3 vol%. For each case, both size-segregated fly ash and bulk fly ash samples were obtained. Simultaneously, ash deposits were collected on an especially designed un-cooled deposition probe. Ash particle size distributions and chemical composition of all samples were characterized. Data showed that oxy-firing had insignificant impacts on the tri-modal ash particle size distributions and composition size distributions in the size range studied. Bulk ash compositions also showed no significant differences between oxy- and air-firing, except for slightly higher sulfur contents in some oxy-fired ashes. The oxy-fired deposits were thicker than those from air-firing, suggesting enhanced ash deposition rates in oxy-firing. Oxy-firing also had apparent impacts on the deposit composition, especially for those components (e.g., CaO, Fe2O3, SO3, etc.) that could contribute significantly to ash deposition. Based on these results, aerodynamic changes in gas flow and changes in combustion temperature seemed more important than chemical changes of ash particles in determining deposit behavior during oxy-coal combustion.  相似文献   

10.
The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 × 5 × 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions – 50% of [waste + (120 g Ca(OCl)2 + 290 g Na2SO4) kg?1 of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF.  相似文献   

11.
Acid gas geological disposal is a promising process to reduce CO2 atmospheric emissions and an environment-friendly and economic alternative to the transformation of H2S into sulphur by the Claus process. Acid gas confinement in geological formations is to a large extent controlled by the capillary properties of the water/acid–gas/caprock system, because a significant fraction of the injected gas rises buoyantly and accumulates beneath the caprock. These properties include the water/acid gas interfacial tension (IFT), to which the so-called capillary entry pressure of the gas in the water-saturated caprock is proportional. In this paper we present the first ever systematic water/acid gas IFT measurements carried out by the pendant drop technique under geological storage conditions. We performed IFT measurements for water/H2S systems over a large range of pressure (up to P = 15 MPa) and temperature (up to T = 120 °C). Water/H2S IFT decreases with increasing P and levels off at around 9–10 mN/m at high T (≥70 °C) and P (>12 MPa). The latter values are around 30–40% of water/CO2 IFTs, and around 20% of water/CH4 IFTs at similar T and P conditions. The IFT between water and a CO2 + H2S mixture at T = 77 °C and P > 7.5 MPa is observed to be approximately equal to the molar average IFT of the water/CO2 and water/H2S binary mixtures. Thus, when the H2S content in the stored acid gas increases the capillary entry pressure decreases, together with the maximum height of acid gas column and potential storage capacity of a given geological formation. Hence, considerable attention should be exercised when refilling with a H2S-rich acid gas a depleted gas reservoir, or a depleted oil reservoir with a gas cap: in the case of hydrocarbon reservoirs that were initially (i.e., at the time of their discovery) close to capillary leakage, acid gas leakage through the caprock will inevitably occur if the refilling pressure approaches the initial reservoir pressure.  相似文献   

12.
Chemical-looping combustion, CLC, is a technology with inherent separation of the greenhouse gas CO2. The technique uses an oxygen carrier made up of particulate metal oxide to transfer oxygen from combustion air to fuel. In this work, an oxygen carrier consisting of 60% NiO and 40% NiAl2O4 was used in a 10 kW CLC reactor system for 160 h of operation with fuel. The first 3 h of fuel operation excepted, the test series was accomplished with the same batch of oxygen carrier particles. The fuel used in the experiments was natural gas, and a fuel conversion to CO2 of approximately 99% was accomplished. Combustion conditions were very stable during the test period, except for the operation at sub-stoichiometric conditions. It was shown that the methane fraction in the fuel reactor exit gas was dependent upon the rate of solids circulation, with higher circulation leading to more unconverted methane. The carbon monoxide fraction was found to follow the thermodynamical equilibrium for all investigated fuel reactor temperatures, 660–950 °C. Thermal analysis of the fuel reactor at stable conditions enabled calculation of the particle circulation which was found to be approximately 4 kg/s, MW. The loss of fines, i.e. the amount of elutriated oxygen carrier particles with diameter <45 μm, decreased during the entire test period. After 160 h of operation the fractional loss of fines was 0.00022 h−1, corresponding to a particle life time of 4500 h.  相似文献   

13.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

14.
Mesoporous MCM-48 silica was synthesized using a cationic-neutral surfactant mixture as the structure-directing template and rice husk ash (RHA) as the silica source. The MCM-48 samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 physisorption and SEM. X-ray diffraction pattern of the resulting MCM-48 revealed typical pattern of cubic Ia3d mesophase. BET results showed the MCM-48 to have a surface area of 1024 m2/g and FT-IR revealed a silanol functional group at about 3460 cm−1. Breakthrough experiments in the presence of MCM-48 were also carried out to test the material's CO2 adsorption capacity. The breakthrough time for CO2 was found to decrease as the temperature increased from 298 K to 348 K. The steep slopes observed shows the CO2 adsorption occurred very quickly, with only a minimal mass transfer effect and very fast kinetics. In addition, amine grafted MCM-48, APTS-MCM-48 (RHA), was prepared with the 3-aminopropyltriethoxysilane (APTS) to investigate the effect of amine functional group in CO2 separation. An order of magnitude higher CO2 adsorption capacity was obtained in the presence of APTS-MCM-48 (RHA) compared to that with MCM-48 (RHA). These results suggest that MCM-48 synthesized from rice husk ash could be usefully applied for CO2 removal.  相似文献   

15.
A column of silica gel was employed to contact water with flue gas (CO2/N2) mixture to assess if CO2 can be separated by hydrate crystallization. Three different silica gels were used. One with a pore size of 30 nm (particle size 40–75 μm) and two with a pore size of 100 nm and particle sizes of 40–75 and 75–200 μm respectively. The observed trends indicate that larger pores and particle size increase the gas consumption, CO2 recovery, separation factor and water conversion to hydrate. Thus, the gel (gel #3) with the larger particle size and larger pore size was chosen to carry out experiments with concentrated CO2 mixtures and for experiments in the presence of tetrahydrofuran (THF), which itself is a hydrate forming substance. Addition of THF reduces the operating pressure in the crystallizer but it also reduces the gas uptake. Gel #3 was also used in experiments with a fuel gas (CO2/H2) mixture in order to recover CO2 and H2. It was found that the gel column performs as well as a stirred reactor in separating the gas components from both flue gas and fuel gas mixtures. However, the crystallization rate and hydrate yield are considerably enhanced in the former. Finally the need for stirring is eliminated with the gel column which is enormously beneficial economically.  相似文献   

16.
The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m3) of cement and a density of 1,300 kg/m3. The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples (p‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm2). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.  相似文献   

17.
The paper presents a methodology for CO2 chain analysis with particular focus on the impact of technology development on the total system economy. The methodology includes the whole CO2 chain; CO2 source, CO2 capture, transport and storage in aquifers or in oil reservoirs for enhanced oil recovery. It aims at supporting the identification of feasible solutions and assisting the selection of the most cost-effective options for carbon capture and storage. To demonstrate the applicability of the methodology a case study has been carried out to illustrate the possible impact of technology improvements and market development. The case study confirms that the CO2-quota price to a large extent influence the project economy and dominates over potential technology improvements. To be economic feasible, the studied chains injecting the CO2 in oil reservoirs for increased oil production require a CO2-quota price in the range of 20–27 €/tonne CO2, depending on the technology breakthrough. For the chains based on CO2 storage in saline aquifers, the corresponding CO2-quota price varies up to about 40 €/tonne CO2.  相似文献   

18.
CO2 capture and geological storage (CCS) is considered as a viable option to mitigate greenhouse gas emissions during the transition phase towards the use of clean and renewable energy. This paper concentrates on the transport of CO2 between source (CO2 capture at plants) and sink (geological storage reservoirs). In the cost estimation of CO2 transport, the pipeline diameter plays an important role. In this respect, the paper reviews equations that were used in several reports on CO2 pipeline transport. As some parameters are not taken into account in these equations, alternative formulas are proposed which calculate the proper inner diameter size based on flow rate, pressure drop per unit length, CO2 density, CO2 viscosity, pipeline material roughness and topographic height differences (the Darcy–Weisbach solution) and, in addition, on the amount and type of bends (the Manning solution). Comparison between calculated diameters using the reviewed and the proposed equations demonstrate the important influence of elevation difference (which is not considered in the reviewed equations) and pipeline material roughness-related factor on the calculated diameter. Concerning the latter, it is suggested that a Darcy–Weisbach roughness height of 0.045 mm better corresponds to a Manning factor of 0.009 than higher Manning values previously proposed in literature. Comparison with the actual diameter of the Weyburn pipeline confirms the accuracy of the proposed equations. Comparison with other existing CO2 pipelines (without pressure information) indicate that the pipelines are designed for lower pressure gradients than 25 Pa/m or for (future) higher flow rates. The proposed Manning equation is implemented in an economic least-cost route planner in order to obtain the best economic solution for pipeline trajectory and corresponding diameter.  相似文献   

19.
Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000 tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4 mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.  相似文献   

20.
Durability of conventional concretes containing black rice husk ash   总被引:1,自引:0,他引:1  
In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water–binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H2SO4) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water–binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO2 + Al2O3 + Fe2O3)/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号