首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The soil oxidative and anaerobic processes, as well as, the microbial biomass were followed during three years in a cotton farm (Tatuí) where the recommended pesticides have been used for several years, and in an experimental field (São Paulo) treated first time with the same pesticides. The oxidative process was monitored by the dehydrogenase (DHA)‐activity using triphenyltetrazolium chloride (TTC) as substrate. The anaerobic process was followed by the iron‐oxide reduction, and the microbial biomass was estimated by the substrate (glucose)‐indiced respiration. Increases in DHA‐activity and in the microbial biomass occurred only in the farm soil, with concomitant decreases in iron‐reduction. In the experimental field soil, the increases in DHA‐activity were followed only by decreases in iron‐reduction. Soil characteristics were the determining factor for different biological parameters after pesticide inputs. All the pesticides produced at least one clear but transient effect.  相似文献   

2.
The impact of pesticides, namely thiobencarb (TBC), molinate (MOL) and chlorpyrifos (CPF), on soil microbial processes was studied in two Australian soils. Substrate induced respiration (SIR), substrate induced nitrification (SIN) and phosphatases and chitinase enzymatic activities were assessed during a 30-day microcosm study. The pesticides were applied to soils at recommended rates either alone, or as binary mixtures with TBC. Soil samples were sampled at 5, 15 and 30 days after pesticide treatments. Substrate induced respiration was only transiently affected by pesticides in both soils. In contrast, the process of indigenous nitrification was affected by the presence of pesticides in both soils, especially when the pesticides were applied as binary mixtures. Substrate induced nitrification increased with pesticides in the Griffith soil (except with MOL+TBC after 5 days) whereas SIN values were non-significantly different to the control on the Coleambally soil. The binary mixtures of pesticides with TBC resulted in a decrease in SIN in both soils, but the effects disappeared within 30 days. The enzymatic activities were not consistently affected by pesticides, and varied with the soil and pesticides studied. This study showed that, when applied at recommended application rates, TBC, MOL, and CPF (individually or as binary mixtures), had little or only transitory effects on the functional endpoints studied. However, further investigations are needed to assess the effect on microbial densities and community structure despite the low disturbance to the functions noted in this work.  相似文献   

3.
The impacts of the fungicides azoxystrobin, tebuconazole and chlorothalonil on microbial properties were investigated in soils with identical mineralogical composition, but possessing contrasting microbial populations and organic matter contents arising from different management histories. Degradation of all pesticides was fastest in the high OM/biomass soil, with tebuconazole the most persistent compound, and chlorothalonil the most readily degraded. Pesticide sorption distribution coefficient (K(d)) did not differ significantly between the soils. Chlorothalonil had the highest K(d) (97.3) but K(d) for azoxystrobin and tebuconazole were similar (13.9 and 12.4, respectively). None of the fungicides affected microbial biomass in either soil. However, all fungicides significantly reduced dehydrogenase activity to varying extents in the low OM/biomass soil, but not in the high OM/biomass soil. The mineralization of subsequent applications of herbicides, which represents a narrow niche soil process was generally reduced in both soils by azoxystrobin and chlorothalonil. 16S rRNA-PCR denaturing gradient gel electrophoresis (DGGE) indicated that none of the fungicides affected bacterial community structure. 18S rRNA PCR-DGGE analysis revealed that a small number of eukaryote bands were absent in certain fungicide treatments, with each band being specific to a single fungicide-soil combination. Sequencing indicated these represented protozoa and fungi. Impacts on the specific eukaryote DGGE bands showed no relationship to the extent to which pesticides impacted dehydrogenase or catabolism of herbicides.  相似文献   

4.
Spatial variability in the degradation rate of isoproturon in soil   总被引:2,自引:0,他引:2  
Thirty samples of soil were taken at 50-m intersections on a grid pattern over an area of 250 x 200 m within a single field with nominally uniform soil characteristics. Incubations of isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) under standard conditions (15 degrees C; -33 kPa soil water potential) indicated considerable variation in degradation rate of the herbicide, with the time to 50% loss (DT50) varying from 6.5 to 30 days. The kinetics of degradation also varied between the sub-samples of soil. In many of them, there was an exponential decline in isoproturon residues; in others, exponential loss was followed by more rapid rates of decline; in a few soil samples, rapid rates of loss began shortly after the start of the incubations. In more detailed studies with soils from a smaller number of sub-sites (20), measurements were again made of isoproturon degradation rate, and the soils were analysed for organic matter content, pH, and nutrient status (N, P, K). Measurements were also made of isoproturon adsorption by the soils and of soil microbial biomass. Patterns of microbial metabolism were assessed using 95 substrates in Biolog GN plates. Soils showing rapid biodegradation were generally of higher pH and contained more available potassium than those showing slower degradation rates. They also had a larger microbial biomass and greater microbial metabolic diversity as determined by substrate utilisation on Biolog GN plates. The implications of the results for the efficacy and environmental behaviour of isoproturon are discussed.  相似文献   

5.
Effect of tetraconazole application on the soil microbial community   总被引:1,自引:0,他引:1  
Tetraconazole is one of the most commonly used triazole fungicides in agricultural practice, and its continuous application poses a potential risk for non-target soil microorganisms. Therefore, the objective of this study was to evaluate the effect of tetraconazole at the field rate (T1, 0.33 mgkg?1 of soil), three times the field rate (T3, 1.00 mgkg?1 of soil) and 10 times the field rate (T10, 3.33 mgkg?1 of soil) on the soil microorganisms. To ascertain this effect, the tetraconazole concentration and the microbial properties with potential as bioindicators of soil health (i.e. microbial biomass C, basal respiration, substrate-induced respiration, structure diversity and functional community profiling) were determined. The results showed that the degradation half-lives of tetraconazole varied from 69 to 87 days, depending on the three application concentrations. The microbial biomass C, basal respiration and substrate-induced respiration were inhibited, but they tended to recover at the end of the incubation when tetraconazole was applied at the recommended field rate. The ratios of the gram-negative to gram-positive (GN to GP) bacteria decreased, and the fungi to bacteria ratio increased after a temporal decrease on the seventh day. A principal component analysis of the PLFAs showed that tetraconazole application significantly shifted the microbial community structure on day 7. Different functional community profiles were observed, depending on the tetraconazole application rates. It was concluded that tetraconazole application decreases the soil microbial biomass and activity and changes the structures of the soil microbial community.  相似文献   

6.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

7.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

8.
The aim of this study was to evaluate the soil microbial characteristics in historically heavy-metal polluted soil, which was also affected by organic co-contaminants, 2,4-dichlorophenol or pentachlorophenol, which often occur due to the conventional use of pesticides. It was observed that the normalized microbial biomass (microbial biomass per unit soil organic C) of the contaminated soil was very low, less than 1% in both non-planted and ryegrass planted soil, and showed a decreasing trend with the treatment of organic co-contaminants. The microbial biomass and substrate-induced respiration (SIR) in the ryegrass planted soil were much larger, as compared with the non-planted soil with or without organic pollutants. The different resistant bacterial community and its physiological diversity in the rhizosphere further suggested that the effect of vegetation on microbial activity was not just a general increase in the mass or activity of pre-existing microorganisms, but rather acted selectively on microbial growth so that the relative abundance of different microbial groups in soil was changed. In sum, high concentrations of organic co-contaminants, especially pentachlorophenol (PCP), could strengthen the deterioration of microbial ecology. The adverse effect of heavy metal-organic pollutants on the soil microbial biomass and activity might be the reason for the slow degradation of PCP that has high chlorinated and high toxicity. Vegetation might be the efficient way to assist in improving and restoring the utilization of agricultural ecosystems. The beneficial microbial effect of vegetation could cause the rapid dissipation of 2,4-dichlorophenol (2,4-DCP) that has less chlorinated and less toxicity in the planted soils.  相似文献   

9.
The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1 %, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p?<?0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.  相似文献   

10.
The relationship among sugar concentrations, microbial community and physical variables (precipitation and soil temperature) was investigated in a ryegrass soil from January 2004 to January 2005. Mono- and disaccharide sugars were extracted using a mixture of dichloromethane and methanol and analyzed as their TMS derivatives by GC-MS. Changes in microbial community were assessed using phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) analysis. The results of a one-year study showed that the seasonal variability of sugar contents found in the soil samples is mainly related to biomass or nutritional status of the fungal community. The increase in sucrose and fructose exudation by plant roots in the beginning of the growing season (early spring) may be responsible for the highest fungal biomass amount (PLFAs) observed in this study. Fungal storage lipid abundances (NLFAs) peaked in summer, during the same period that the highest concentrations of mannitol and trehalose were detected. This is consistent with these two sugars being stress-induced fungal metabolites, produced due to the low soil moisture observed during this season. In contrast, bacterial community growth seems to be more dependent on plant substrate than on physical variables, since the strongest decrease in bacterial biomass amounts (PLFAs) was found after cutting of the ryegrass field in early July.  相似文献   

11.
Muhammad A  Xu J  Li Z  Wang H  Yao H 《Chemosphere》2005,60(4):508-514
A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.  相似文献   

12.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

13.
The effect of four triazinyl-sulfonylurea herbicides (cinosulfuron, prosulfuron, thifensulfuron methyl, triasulfuron) on soil microbial biomass, soil respiration, metabolic activity, metabolic quotient, and some enzymatic activities (acid and alkaline phosphatase, β-glucosidase, arylsulphatase, and fluorescein diacetate hydrolysis) were monitored under controlled conditions over 30 days. The herbicides were applied at the normal field dose (FD) and at ten-fold (10 FD) the field dose, in order to mimic a long term toxic effect. The measured soil microbial parameters showed that the FD had slight effects on soil microflora, while at 10 FD the tested herbicides exerted a stronger detrimental effect on soil microbial biomass and its biochemical activities.  相似文献   

14.
Hseu ZY 《Chemosphere》2006,64(10):1769-1776
In the application of biosolids on agricultural lands, 4-nonylphenol (4-NP) in soils is an important environmental concern because of its associated estrogenic risk to animals and human beings. Incubation experiments that involved the mixing of two contrasting soils (A: calcareous sandy soil; B: acidic clayey soil) and biosolids in 4-NP were performed to examine the effect of 4-NP on the rate of production of CO2, the mineralization of N and the microbial biomass, by considering the biodegradation of 4-NP for the evaluation of soil health. The experimental results indicated that the half-life (t1/2) of 4-NP increased with the supplementary concentration of 4-NP (80, 160 and 240 mg kg(-1)) in the two soils, and the t1/2 values in the soil A are always lower than that in soil B. The 4-NP supplement in the biosolids reverses C mineralization in soil B more than it does in soil A, but it reverses N mineralization in soil A more than in soil B. The aeration status and microbial population of the biosolids treated soils are key factors in determining the time course of 4-NP degradation associated with the microbial activities. The 4-NP was biodegraded mainly by bacteria, and the effect on C and N mineralization of 4-NP input is determined by a balance of the reductions in microbial biomass C (MBC) and N (MBN). After destruction in microbial cell membrane and protein structures by the 4-NP, C and N mineralization, MBC and MBN were subsequently followed by a final decline phase for the later period of incubation.  相似文献   

15.
A comparison of dissipation of chlorothalonil, chlorpyrifos, and profenofos in a Malaysian agricultural soil between the field experiment and simulation by the PERSIST model was studied. A plot of sweet pea (Pisum sativum) from a farm in the Cameron Highlands was selected for the field experiment. The plot was treated with chlorothalonil, chlorpyrifos, and profenofos. Core soil collection was conducted according to the sampling schedule. Residues of the three pesticides were analyzed in the laboratory. Simulations of the three pesticides' persistency were also conducted using a computer-run software PERSIST. Generally, predicted data obtained using PERSIST were found to be high for the three pesticides except for one field measurement of chlorpyrifos. The predicted data for profenofos, which is the most mobile of the three pesticides tested, was not well matched with the observed data compared to chlorothalonil and chlorpyrifos.  相似文献   

16.
建立了含有悬浮微生物、电极上生物量、可溶性化学底物和中介体的微生物燃料电池(MFC)数学模型。通过底物降解、生物增长和电流产生过程的模拟,考察了生物量和底物随时间的变化规律,底物质量浓度对生物量、底物降解和电流的影响。结果表明,当溶液中初始微生物量很少时,随着MFC反应的进行,生物主要富集在电极上,溶液中生物生长缓慢;MFC中的生物生长经历延滞期、对数期和平稳期,底物分解经历缓慢、快速和消耗殆尽3个阶段。底物质量浓度小于等于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而缩短。底物质量浓度大于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而增加。  相似文献   

17.
18.
Changes of copper speciation in maize rhizosphere soil   总被引:1,自引:0,他引:1  
Chemical forms of copper in the rhizosphere and bulk soil of maize were investigated using rhizobox cultivation and sequential extraction techniques. The copper accumulations were also determined. The results demonstrated that there were continuous changes in copper fractionation within the maize rhizosphere. Initially, the amount of exchangeable copper increased before dropping below the initial level after 40 days or so. Carbonate associated copper followed a similar trend of change, but with a slower pace than the exchangeable copper. The increase in carbonate associated copper only become evident after 30 days, with the net loss occurring after 60 days. There were also initial increases in oxide bound copper as well as decreases in the organic matter associated copper, both followed by a turnover after 40-50 days. The accumulation of copper in the maize plant was found to be biomass dependent. The amount of accumulated copper absorbed in the plant material exceeded the initial quantity of the exchangeable copper in the soil, revealing a transformation from less bioavailable to more bioavailable fractions. During cultivation, decreases in redox potential and increases in pH, dissolved organic carbon (DOC), and microbial activity in the maize rhizosphere were observed. The change in copper speciation may result from root-induced changes in DOC, redox potential, and microbial activity in the rhizosphere.  相似文献   

19.
The effect of cadmium on C and N mineralization in sewage sludge amended and unamended sandy loam, loam and clay loam soils was studied during 2 months incubation at 30+/-1 degrees C. The sludge amendment caused 15-39% increase in microbial respiration, with the maximum C mineralization in sandy loam and the minimum in loam soil. The addition of 10 microg Cd g(-1) soil had no remarkable effect on C and N mineralization and microbial biomass; whereas significant decreases in the above parameters were observed at 25 and 50 microg Cd g(-1) soil, irrespective of the sludge addition. Less NO3(-)-N accumulated at higher Cd concentration. Cd recovery was high in sandy loam and low in clay loam soil. DTPA extractable Cd exhibited a significant negative correlation with microbial biomass (r=-0.58* to -0.86*; p < 0.05).  相似文献   

20.
Araújo AS  Monteiro RT 《Chemosphere》2006,64(6):1043-1046
This laboratory study examines the effect of application of untreated and composted textile sludge on microbial biomass and activity in a Brazilian soil. The soil was amended with untreated and composted sludge at rates equivalent of 6.4t ha(-1) (0.64 g per 100g of soil) and 19t ha(-1) (1.90 g per 100g of soil), respectively, and were incubated at 28 degrees C for 60 days and daily sampled for microbial activity. An additional experiment, in the same condition, was conduced for evaluation of microbial biomass and enumeration of microorganisms at 15, 30 and 60 days after incubation. The application of composted sludge increased significantly the microbial biomass and activity, and bacteria number of soil. There were not differences in the microbial activity and bacteria number among the control and untreated sludge amended soils. In conclusion, after 2 months of incubation, the effects of the two amendments on soil microorganisms were: microbial biomass, soil respiration and bacteria number were increased only in composted sludge treated soil. qCO2 and fungi number were not affected by untreated and composted sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号