首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tridacna gigas (L.) populations were sampled from 13 locations throughout the west Pacific in 1990–1991 and screened for allozyme variation at seven polymorphic loci. Significant genetic differences were found between the few large stocks of T. gigas remaining in the world. Cluster analysis identified two major regional groups of populations: a Central Pacific group consisting of Kiribati and the Marshall Islands, and a West Pacific group comprising all other populations. Within the latter group, the Great Barrier Reef populations were significantly differentiated from those in the Solomon Islands. The main routes of gene flow did not run parallel with known major surface currents as might be expected, but crossed them. Gene exchange was limited east-west between the Central and West Pacific groups and the GBR and the Solomon Islands. The lack of correspondence between the major surface currents and the routes of gene flow suggests that the genetic structure of T. gigas reflects historical patterns of migration that no longer occur, rather than presentday dispersal. These findings raise fundamental questions concerning the origin and maintenance of genetic diversity in Pacific faunas, and have important implications for the mariculture and conservation of T. gigas.  相似文献   

2.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

3.
The study used population genetic data to test whether outbreaks of crown-of-thorns starfish (Acanthaster planci) on the Great Barrier Reef (GBR) are largely derived from a single outbreak or are independent events. The consequences of different modes of outbreak for population differentiation and gene flow were predicted and then compared with those estimated from a set of 8 outbreaking and a set of 5 non-outbreaking populations sampled in 1986 and 1987. The level of inter-population variation observed among outbreaking populations was less than that among non-outbreaking populations and gene flow was greater among outbreaking than among non-outbreaking populations. Greater population differentiation among non-outbreaking than outbreaking populations was not consistent with the hypothesis that outbreaks were independent events, but was consistent with a number of outbreaks being secondary. Estimates which took account of a number of aspects of sampling error demonstrated significant levels of genetic subdivision among non-outbreaking populations but not among outbreaking populations. The lack of significant genetic subdivision of outbreaking populations, given significant levels among non-outbreaking populations, was also inconsistent with outbreaks being indenpendent events, but was consistent with outbreaks being largely secondary. The allozyme data were insufficient to identify clearly individual populations that might have been the result of an independent outbreak. It is concluded that the majority of outbreaks are probably secondary derivatives from a single primary outbreak occurring in the northern part of the Central Section of the GBR, although the possibility that a small number of populations might outbreak independently of the main set cannot be excluded.Contribution No. 547 from the Australian Institute of Marine Science  相似文献   

4.
Large genetic differences were observed among the Great Barrier Reef (GBR), Fiji and Philippine populations of Tridacna derasa (Roding) sampled in 1989 and 1990 (Nei's unbiased genetic distance, D,=0.137 to 0.341). This result contrasted strongly with the low genetic distance (D=0.032) reported previously for the giant clam T. maxima over similar geographical scales. No significant genetic differentiation was observed among most populations from the GBR (mean D=0.007), consistent with the high gene exchange expected in this highly connected reef system. However, significant differentiation resulting from differences in the frequencies of less common alleles between the North-Central GBR and South GBR (Swain region) were observed. Historical isolation of blocks of the Central Indo-West Pacific from the GBR and present-day restrictions to gene exchange between the GBR, Fiji and the Philippines as a result of oceanographic current patterns, were thought to be responsible for the high degree of genetic differentiation of T. derasa populations. The relevance of these findings to clam mariculture and reef restocking are briefly discussed.Contribution No. 197 from the Marine Science Institute, University of the Philippines and Contribution No. 562 from the Australian Institute of Marine Science  相似文献   

5.
Here the population genetic structure of an ecologically and economically important coral reef fish, the coral trout Plectropomus leopardus, is investigated in the context of contemporary and historical events. Coral trout were sampled from four regions (six locations) and partial mtDNA D-loop sequences identified six populations (Fst = 0.89209, P < 0.0001): Scott Reef and the Abrolhos Islands in west Australia; the Great Barrier Reef (GBR), represented by northern and southern GBR samples; New Caledonia and Taiwan, with Taiwan containing two genetic lineages. Furthermore, this study identified source and sink populations within and among regions. Specifically, the northern population in west Australia (Scott Reef) was identified, as the source for replenishment of the Abrolhos population, whilst New Caledonia was a source for recruitment to the GBR. Based on these insights from a single mtDNA marker, this study will facilitate the development of rational management plans for the conservation of P. leopardus populations and therefore mitigate the risk of population declines from anthropogenic influences.  相似文献   

6.
The genetic population structure of the precominant zooplankter, the copepod Calanus finmarchicus (Gunnerus), was examined to determine whether genetically distinct populations exist in the Gulf of Maine. C. finmarchicus was sampled in three regions of the Gulf of Maine (Great South Channel, spring 1989; northern Gulf of Maine, winter 1990; Great South Channel and Georges Bank, spring 1990). Copepods from seven locations in the Great South Channel, five in the northern Gulf of Maine and four on or near Georges Bank were assayed for allozyme variation and mitochondrial DNA variation of amplified 16S rRNA and cytochrome b genes. Restriction fragment length polymorphism (RFLP) analyses of both mitochondrial DNA genes revealed no variation among any of the individuals assayed. Analysis of five polymorphic allozyme loci revealed that genetic variation among the three geographic regions was low, and genetic identities were high between all locations (I>0.97). Most of the genetic variation was among locations regardless of region. Chi-square tests were used to examine genetic similarity between specific pairs of locations within and between regions. In the northern Gulf of Maine, genetic homogeneity occurred over larger spatial scales (hundreds of km) than in either the Great South Channel or Georges Bank (tens of km). Only copepods from the Bay of Fundy and Nova Scotian Shelf locations were genetically distinct from Wilkinson Basin copepods at two loci. Copepod populations from the northern locations may have been partially isolated or they may represent immigrant populations (e.g., from the Gulf of St. Lawrence). Several pairs of locations were genetically distinct at one or more loci in the two southern regions. Differences between locations in these regions may represent distinct populations advected into the areas at different times or from different sources (e.g., genetic variation may represent a mixture of genetically distinct northern and southern copepod populations). These results suggest extensive gene flow among populations of C. finmarchicus in the Gulf of Maine with some evidence of genetic population subdivision near the Gulf's northeastern and southern boundaries.  相似文献   

7.
Trochus niloticus L. and Tectus coerulescens Lmk., two coral reef trochid gastropods that have similar life-histories including a lecithotrophic larval stage, were sampled from reefs in the northern, central and southern sections of the Great Barrier Reef (GBR) in 1991. Significant sex-ratio biases were noted, and these varied among reefs, apparently with latitude. Demographic data suggested that highly discontinuous and localized recruitment occurs. Surveys of allozyme frequencies at 12 loci revealed no significant genetic differences among populations of Trochus niloticus at any geographical scale. High gene flow between zones of the GBR was inferred, with the number of migrants per generation (N m ) of the order of 100. Directional selection was thought to occur at one locus (GDH *). Genetic variability in T. niloticus (H=0.069 to 0.110, and only three loci polymorphic) was low compared with other trochids. This was thought to be due to smaller effective population size, resulting from an unbalanced sexratio, aggregative spatial distribution of adults, high variance in reproductive success, and/or the occurrence of population extinctions and recolonisations. In contrast, Tectus coerulescens exhibited significant genetic differences between zones, indicating a much lower rate of migration between populations (N m 1 to 10), and displayed high genetic diversity (H=0.225 to 0.279). A trend for increasing genetic diversity from the northern to southern GBR was found in both species. It is not clear whether the occurrence of two contrasted population genetic structures in species with apparently similar life-histories is due to ecological or historical factors.  相似文献   

8.
The levels of genetic variation and estimates of genetic similarity and distance were determined for populations of Crassostrea gigas (Thunberg) and Saccostrea commercialis (Iredale and Roughley). The proportion of polymorphic loci in Japanese populations of C. gigas ranged from 0.58 to 0.63, while the individual heterozygosities ranged from 0.20 to 0.22. The proportion of polymorphic loci in Australian populations of S. commercialis ranged from 0.43 to 0.46, the individual heterozygosities from 0.17 to 0.19. The genetic similarity between different geographical populations of both species was approximately 99%. The genetic distance and similarity data derived from this investigation has resulted in some provisional reclassifications. The Portuguese oyster C. angulata (Lamarck) appears to be more appropriately regarded as a recent colonized isolate of C. gigas. The New Zealand oyster S. glomerata (Gould) is considered a subspecies of the eastern Australian rock oyster S. commercialis. The Japanese Kumamoto population of C. gigas warrants reclassification as the non-sibling species C. sikamea.  相似文献   

9.
C. L. Dudgeon  N. Gust  D. Blair 《Marine Biology》2000,137(5-6):1059-1066
 Two species of parrot fish, Scarus frenatus and Chlorurus sordidus, are known to exhibit demographic and life-history differences across the continental shelf of the northern Great Barrier Reef (GBR). DNA sequences from the mitochondrial (mt) control region were analysed to determine whether there were genetic differences between the populations from the mid- and outer-shelf reefs. Analysis of molecular variance (AMOVA) indicated high levels of gene exchange for both species at a local scale between reefs on mid- and outer continental shelf positions (20 km apart) and at a broader scale along the length of the GBR province (>1000 km apart). There was no evidence to suggest that local differences in scarid life-history characteristics on the northern GBR have a genetic basis. Rather it appears more likely that phenotypically plastic responses to prevailing social and environmental conditions explain differences in the life-history characteristics of both taxa. However, analysis of genetic variation and historical demography revealed striking differences between the two species. S. frenatus haplotypes differed from one another at relatively few nucleotide sites (mean = 3.30), and the pairwise mismatch distribution suggested this species has undergone a population expansion within the limit of the resolution of the marker. C. sordidus haplotypes, however, differed from one another at a number of sites (mean = 7.67). Mismatch distribution analysis suggested that the population size of this species has remained at equilibrium over time. These patterns could also reflect differences in the metapopulation sizes or generation times between taxa. Some of the implications for fisheries management are discussed. Received: 28 January 2000 / Accepted: 9 July 2000  相似文献   

10.
The patchy distribution of rocky intertidal communities in the tropical eastern Pacific (TEP) may impose severe constraints on the genetic connectivity among populations of marine invertebrates associated with this habitat. In this study, we analyzed a portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene in two sympatric species of marine snails, Nerita scabricosta and Nerita funiculata, common inhabitants of the rocky intertidal from the Gulf of California (Sea of Cortez) and outer Pacific coast of the southern Baja California (Baja) peninsula to northern South America, to assess genetic connectivity among populations of each species. One of our aims was to determine whether the morphological, behavioral, and ecological differences observed among populations of both species throughout their range in the TEP corresponded to population genetic differences. In addition, we were interested in elucidating the demographic history of both species. We found no evidence of genetic structure throughout the Gulf of California and outer coast of the Baja peninsula region for either species. Comparisons between Gulf of California/Baja and Panama populations, however, showed significant genetic differentiation for N. scabricosta, but not for N. funiculata. The genetic differences between Mexican and Panamanian populations of N. scabricosta were consistent with previously reported ecological and behavioral differences for this species between these two distant regions. However, previously reported size differences between northern and central/southern Gulf of California individuals of N. scabricosta do not correspond with our findings of genetic connectivity among these populations. Results from neutrality tests (Tajima’s D and Fu’s F S), the mismatch distribution, and Bayesian skyline analyses suggested that both species have experienced dramatic population expansions dating to the Pleistocene.  相似文献   

11.
Acanthochromis Gill is a monotypic genus within the damselfish family Pomacentridae, erected for an unusual species [A. polyacanthus (Bleeker)] that uniquely lacks larval dispersal. Instead, offspring are reared in the parental territory, in the manner of cichlids, and fledged into the surrounding habitat. Phenotypic and genotypic variation was surveyed on the basis of body colouration and 7 polymorphic loci in 19 populations from 5 regions of the central and southern Great Barrier Reef (GBR). Variation in both characters was found at regional and local scales. Two colour morphs were recognised: a bicoloured morph from the three northern regions and a uniform dark morph from the two southern regions. Isozyme analysis showed a similar pattern with greatest variation between the different morphs, but also with significant variation at both regional and local scales within morphotypes. Heterozygosity was maximal in the central populations, which, together with other measures of variability, suggests a mixing of separate gene pools in this region and denies species status to the two morphotypes despite numerous fixed differences in allele frequencies between the most distant populations. The presence of fixed differences in multiple alleles between populations separated by 1000 km indicates negligible gene flow over such distances and long isolation of these gene pools. These patterns may reflect recolonisation of the GBR after the last sea-level rise by fish from two stocks. Founder effects and random drift in small populations after colonisation are probably the major sources of the local and regional variations observed at smaller spatial scales. This diversity has been maintained among populations at all scales by the very low levels of gene flow possible without an effective strategy for larval dispersal between coral reefs.  相似文献   

12.
The northern Pacific seastar Asterias amurensis Lütken was recently introduced to Tasmanian waters, possibly through ballast water discharged from ocean-going vessels. Three Tasmanian populations and seven native populations from Japan and eastern Russia were examined in 1994 for variation at 22 allozyme loci. There was significant spatial heterogeneity in gene frequencies among the native populations, especially for the ocus APK *, where G ST was a very high 0.47. The Tasmanian populations could not be separated genetically from one another, suggesting they have a common origin from a single introduction. The average heterozygosity per locus of the Tasmanian populations (0.116 to 0.127, mean 0.123) was 30 to 40% less than that of the native populations (0.177 to 0.216, mean 0.192), suggesting that colonisation of Tasmanian waters was accompanied by a population-size bottle-neck. The Tasmanian seastars were genetically more closely related to the two populations from central Japan (Suruga and Tokyo Bays) than to populations from Vladivostok, northern Japan (Yoichi, Nemuro and Mutsu Bays) or southern Japan (Ariake Sea). However, there were significant differences between the populations from Tasmania and central Japan, which may be attributable to founder effects or may mean that the true source of the Tasmanian introduction has yet to be identified.  相似文献   

13.
The genetic structure of 12 reef populations of the soft coral Sinularia flexibilis (Octocorallia, Alcyoniidae) was studied along the Great Barrier Reef (GBR) at a maximum separation of 1,300 km to investigate the relative importance of sexual and asexual reproduction, genetic differentiation and gene flow among these populations. S. flexibilis is a widely distributed Indo-Pacific species and a gamete broadcaster that can form large aggregations of colonies on near-shore reefs of the GBR. Up to 60 individuals per reef were collected at a minimum sampling scale of 5 m at two sites per reef, from December 1998 to February 2000. Electrophoretic analyses of nine polymorphic allozymes indicated that genotypic frequencies in most populations and loci did not differ significantly from those expected from Hardy–Weinberg predictions. Analysis of multi-locus genotypes indicated a high number of unique genotypes (N go) relative to the number of individuals sampled (N) in each reef population (range of 0.69–0.95). The maximum number of individuals likely to have been produced sexually (N*) was similar to the number of individuals sampled (i.e. N*:N ˜ 1), suggesting that even repeated genotypes may have been produced sexually. These results demonstrated a dominant role of sexual reproduction in these populations at the scale sampled. Significant genetic differentiation between some populations indicated that gene flow is restricted between some reefs (F ST=0.026, 95% CI= 0.011 − 0.045) and even between sites within reefs (F ST=0.041, 95% CI=0.027 − 0.055). Nevertheless, there was no relationship between geographic separation and genetic differentiation. Analyses comparing groups of populations showed no significant differentiation on a north-south gradient in the GBR. The pattern in the number of significant differences in gene frequencies in pairwise population comparisons, however, suggested that gene flow may be more restricted among inner-shelf reef populations near to the coast than among mid/outer-shelf populations further from the coast. Received: 10 July 2000 / Accepted: 5 October 2000  相似文献   

14.
Adult spiny lobsters (Panulirus argus) were collected from nine locations throughout the tropical and subtropical northwest Atlantic Ocean and examined for mitochondrial DNA (mtDNA) variation. 187 different mtDNA haplotypes were observed among the 259 lobsters sampled. Haplotype diversity was calulated to be 0.986 and mean nucleotide sequence-diversity was estimated to be 1.44%; both of these values are among the highest reported values for a marine species. Analysis of molecular variance (AMOVA) and phenetic clustering both failed to reveal any evidence of genetic structure within and among populations of P. argus. The present data are consistent with high levels of gene flow among populations of P. argus resulting from an extended planktonic larval stage and strong prevailing ocean currents.  相似文献   

15.
Variations in the relative contributions of gene flow and spatial and temporal variation in recruitment are considered the major determinants of population genetic structure in marine organisms. Such variation can be assessed through repeated measures of the genetic structure of a species over time. To test the relative importance of these two phenomena, temporal variation in genetic composition was measured in the limpet Cellana grata, among four annual cohorts over 10 years at four rocky shores in Hong Kong. A total of 408 limpets, comprising individuals from 1998, 1999, 2006 and 2007 cohorts were screened for genetic variation using five microsatellite loci. Minor but significant genetic differentiation was detected among samples from the 1998/1999 collection (F ST = 0.0023), but there was no significant differentiation among the 2006/2007 collection (F ST = 0.0008). Partitioning of genetic variation among shores was also significant in 1998/1999 but not in the 2006/2007 collection, although there was no correlation between genetic and geographic distances. There was no significant difference between collections made in 1998/1999 and 2006/2007. This lack of clear structure implies a high level of gene flow, but differentiation with time may be the result of stochastic recruitment variation among shores. Estimates of effective population size were not high (599, 95% C.L. 352–11397), suggesting the potential susceptibility of the populations to genetic drift, although a significant bottleneck effect was not detected. These findings indicate that genetic structuring between populations of C. grata in space and time may result from spatio-temporal variation in recruitment, but the potential development of biologically significant differentiation is suppressed by a lack of consistency in recruitment variability and high connectivity among shores.  相似文献   

16.
Starch-gel electrophoresis was used to study gene-enzyme variation in thirteen populations of eight species of the genus Trapezia from Hawaii, Panamá, and Enewetak Atoll (Marshall Islands). Between 20 and 30 (mean = 27.8) gene-enzyme systems were resolved in each population, with 20 systems in common among all populations. The distribution of electrophenotypes was in agreement with Hardy-Weinberg-Castle expectations, except for T. digitalis, which consistently showed heterozygote deficiencies. Diagnostic loci among color forms support the hypothesis that color forms are distinct species. Low values of genetic distance among species suggest a recent radiation, perhaps during the Pleistocene. Genetic distance between the Hawaiian and Panamanian populations of T. ferruginea did not significantly differ from zero, indicating that the Eastern Pacific population of T. ferruginea has recently immigrated from the central Pacific, and/or that there is gene flow between the two areas. There were diagnostic loci between T. ferruginea and T. formosa from Enewetak and the populations of these species from Hawaii (T. ferruginea only) and Panamá (both species). Therefore, these geographic populations may represent separate species. The level and pattern of genetic variability in Trapezia spp. are in agreement with those observed in most other organisms.  相似文献   

17.
Allozyme electrophoresis was used to characterize genetic variation within and among natural populations of the red sea urchin Strongylocentrotus franciscanus. In 1995 to 1996, adult urchins were sampled from twelve geographically separated populations, seven from northern California and five from southern California (including Santa Rosa Island). Significant population heterogeneity in allelic frequencies was observed at five of six polymorphic loci. No geographic pattern of differentiation was evident; neighboring populations were often more genetically differentiated than distant populations. Northern and southern populations were not consistently distinguishable at any of the six loci. In order to assess within-population genetic variation and patterns of recruitment, large samples were collected from several northern California populations in 1996 and 1997, and were divided into three size classes, roughly representing large adults (>60 mm), medium-sized individuals (31 to 60 mm, “subadults”) and individuals <2 yr of age (≤30 mm test diam, referred to as “recruits”). Comparisons of allelic counts revealed significant spatial and temporal differentiation among size-stratified population samples. Recruit samples differed significantly from adult samples collected at the same locale, and showed extensive between-year variation. Genetic differentiation among recruit samples was much higher in 1997 than in 1996. Between-year differences within populations were always greater for recruits than for adults. Potential explanations for the differentiation of recruit samples include pre- and post-settlement natural selection and high interfamily variance in reproductive success or “sweepstakes” recruitment. Unless recruit differentiation can be attributed to an improbable combination of strong and spatially diverse selection, such differentiation across northern California populations indicates that the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration. Received: 6 July 1999 / Accepted: 25 January 2000  相似文献   

18.
Comparative restriction-fragment analysis was used to analyze the nuclear ribosomal DNA, and alcohol dehydrogenase-1 loci of Zostera marina L., for variation within and among populations. Eelgrass is a perennial marine flowering plant that is widespread and ecologically significant throughout the temperate northern hemisphere. A chemical method was developed to obtain restriction-quality DNA without CsCl fractionation from experimentally relevant quantities of seagrass tissues (0.5 to 1.0 g). The yield was 25 g g-1 fresh weight. The three morphologically distinct forms of Z. marina from disjunct populations examined in this study were found to be genetically distinct; morphologically similar populations were indistinguishable genetically. Genetic distinction also correlated with habitat depth, as subtidal and intertidal populations were clearly divergent. Homologous probes for the 17S and 28S ribosomal DNA genes were used to map 24 restriction sites on the rDNA repeat of Z. marina, which was determined to be about 14 kb in length. At least 1 length mutation and 5 restriction-site changes were identified that distinguished Z. marina populations from San Diego and Monterey Bay (Del Monte Beach) from Z. marina populations from Elkhorn Slough and Tomales Bay. Estimated sequence variation (100×p) between eelgrass populations ranged from 0.00 to 0.69. Individual plants were observed to contain as many as four different rDNA-repeat length variants. The mean number of rDNA-repeat length variants per individual in Z. marina was about two. Intrapopulation variation in rDNA-repeat type was observed in only one individual from the Tomales Bay population.  相似文献   

19.
Demographic plasticity in tropical reef fishes   总被引:2,自引:0,他引:2  
N. Gust  J. Choat  J. Ackerman 《Marine Biology》2002,140(5):1039-1051
We use age-based analyses to demonstrate consistent differences in growth, mortality, and longevity of coral reef fishes from similar habitats (exposed reef crests) 20 km apart. On outer-shelf reef crests of the northern Great Barrier Reef (GBR), size in four taxa of reef fishes (Chlorurus sordidus, Scarus frenatus, and S. niger and the acanthurid Acanthurus lineatus) was systematically and significantly smaller when compared with the same taxa on adjacent mid-shelf reef crests. Differences in size could be attributed to differences in growth between habitats (shelf positions). On outer reef crests the species examined had consistently lower size at age profiles and also reduced life spans compared with populations from mid-shelf reefs. To confirm this relationship, two of the most abundant species (C. sordidus and S. frenatus) were selected for more detailed spatial analysis of demographic patterns. Sampling adults of both taxa from reef crests on three mid- and three outer-shelf reefs revealed that most of the variation in growth was explained by shelf position, although C. sordidus also displayed differences in growth among mid-shelf reefs. We conclude that differences in body sizes across the continental shelf of the northern GBR are primarily determined by these trends in growth. Strong spatial patterns also existed in the mean ages of populations and longevity estimates for C. sordidus and S. frenatus between shelf positions. Both species on outer-shelf reefs displayed less variable cohort sizes, significantly reduced mean ages, and foreshortened longevity compared with populations on mid-shelf reefs. Furthermore, differences in these parameters were rare among replicate reefs within mid- and outer-continental-shelf positions. Age-based catch curves suggested that rates of S. frenatus natural mortality on the outer shelf were nearly twice as high as on the mid shelf. Visual surveys indicated that total scarid densities on outer-shelf reef crests are on average fourfold higher than for equivalent mid-shelf habitats. This fact, coupled with significantly reduced growth rates, reduced mean ages, and increased mortality rates, suggests that density-dependent processes may be responsible for observed differences among localities.  相似文献   

20.
Light traps were used to capture larval fishes, immediately before settlement, at two localities 500 km apart on the Great Barrier Reef (GBR) in December, 1987. Samples from Lizard Island, in the northern GBR, and Davies Reef, in the central GBR, were dominated by two species of damselfish:Chromis atripectralis andPomacentrus coelestis. Analysis of otoliths revealed significant differences in both size and age at settlement between the two localities forP. coelestis, but not forC. atripectoralis. Growth rates determined for pre- and post-settlementP. coelestis suggested a sigmoidal growth trajectory through the larval life, with growth slowing as fishes approached the time of settlement. Post-settlement growth rates were faster than growth prior to settlement in both species. Growth in both species was, however, similar between localities. The relationship between fish size and otolith size was complex, varying both between pre- and post-settlement fishes, and among localities. This emphasizes the need to validate the relationship between fish size and otolith size before otoliths may be used to back-calculate individual growth trajectories.Contribution No. 500 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号