首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from four crop yield-loss field trials were examined to determine if analysis using an imposed phenological weighting function based on seasonal growth stage would provide a more accurate indication of impact of ozone exposure. Alfalfa (Medicago sativa L. cv. Moapa 69), dry bean (Phaseolus vulgaris L. cv. California Dark Red kidney), fresh market and processing tomato (Lycopersicon esculentum Mill. cv. 6718 VF and VF-145-B7879, respectively) were grown at 9-11 ambient field plots within southern California comprising an ambient gradient of ozone. The growing season for each crop was artificially divided into 'quarters' composed of equal numbers of whole days and roughly corresponding to specific growth stages. Ozone exposure was calculated for each of these 'quarters' and regressed against final crop yield using 163 different exposure statistics. Weighting functions were developed using reciprocal residual mean square (1/RMS) or percentage of the best 100 exposure statistics of the 163 tested (TOP100) for each of the quarters. The third quarter of the alfalfa season was clearly most responsive to ozone as measured by both of the weighting functions. Third quarter ozone was also weighted highest by both weighting functions for dry bean. Fresh market and processing tomato were each influenced the greatest by second quartero zone as demonstrated by both weighting functions. The occurrence of ozone during physiologically important events (flowering and initial fruit set in second quarter for tomato; pod development in third quarter for dry bean) appeared to influence the yield of these crops the greatest. Growth-stage-dependent phenological weighting of pollutant exposure may result in more effective predictions of levels of ozone exposure resulting in yield reductions.  相似文献   

2.
ABSTRACT

Lung function response to inhaled ozone at ambient air pollution levels is known to be a function of ozone concentration, exposure duration, and minute ventilation. Most data-driven exposure-response models address exposures under static condition (i.e., with a constant ozone concentration and exercise pattern). Such models are simplifications, as both ambient ozone concentrations and normal human activity patterns change with time. The purpose of this study was to develop a dynamic model of response with the advantages of a statistical model (a relatively simple structure with few parameters). A previously proposed mechanistic model for changes in specific airways resistance was adapted to describe the percent change in forced expiratory volume in one second (FEV1). This model was then reduced using the fit to three existing exposure-response data sets as criterion. The resulting model consists of a single linear differential equation together with an algebraic logistic equation. Under restricted static conditions the model reduces to a logistic model presented earlier by the authors.  相似文献   

3.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone.  相似文献   

4.
5.
A variety of statistical methods for meteorological adjustment of ozone have been proposed in the literature over the last decade for purposes of forecasting, estimating ozone time trends, or investigating underlying mechanisms from an empirical perspective. The methods can be broadly classified into regression, extreme value, and space–time methods. We present a critical review of these methods, beginning with a summary of what meteorological and ozone monitoring data have been considered and how they have been used for statistical analysis. We give particular attention to the question of trend estimation, and compare selected methods in an application to ozone time series from the Chicago area. We conclude that a number of approaches make useful contributions to the field, but that no one method is most appropriate for all purposes and all meteorological scenarios. Methodological issues such as the need for regional-scale analysis, the nonlinear dependence of ozone on meteorology, and extreme value analysis for trends are addressed. A comprehensive and reliable methodology for space–time extreme value analysis is attractive but lacking.  相似文献   

6.
Only few studies have been conducted as yet which focus on the effects of rising tropospheric ozone levels on semi-natural vegetation under free-air conditions. A new technical approach was used to examine the response of calcareous grassland to ozone employing a chamberless fumigation system. Four different ozone regimes were applied (1-, 1.33-, 1.66- and 2-fold ambient air levels) with five replicates each. Ozone enrichment was carried out on circular plots of 2 m in diameter by a computer controlled exposure system. Transparent windscreens encircling each plot accelerated the mixing of ambient air and ozone released. Thus, the use of blowers could be avoided. The exposure system presented here is regarded as an appropriate technique for free-air trace gas enrichment on short vegetation avoiding microclimatic alterations known to affect plant growth and pollutant uptake. Furthermore, the chosen technical set-up was rather cost-effective. Hence, it enabled the establishment of a larger number of replications providing the basis for results of higher statistical power.  相似文献   

7.
This paper presents a statistical model that is able to predict carbon monoxide (CO) concentrations as a function of meteorological conditions and various air quality parameters. The experimental work was conducted in an urban atmosphere, where the emissions from cars are prevalent. A mobile air pollution monitoring laboratory was used to collect data, which were divided into two groups: a development group and a testing group. Only the development dataset was used for developing the model. The model was determined by using a stepwise multiple regression modelling procedure. Thirteen independent variables were selected as inputs: non-methane hydrocarbon (NMHC), methane (CH4), suspended dust, carbon dioxide (CO2), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), wind speed, wind direction, temperature, relative humidity and solar energy. It was found that NO has the most effect on the predicted CO concentration. The contribution of NO to the CO concentration variations was 91.3%. Adding in the terms for NO2), NMHC and CH4 improved the model by only a further 2.3%. The derived model was shown to be statistically significant, and model predictions and experimental observations were shown to be consistent.  相似文献   

8.
Long-term radial growth of bigcone Douglas fir (Pseudotsuga macrocarpa) was studied throughout its range in the San Bernardino Mountains of southern California, where ambient ozone has been high for approximately the past 40 years. A gradient of both ozone concentration and precipitation exists from west (high) to east (low). Growth rates of bigcone Douglas fir are considerably lower since 1950 throughout the San Bernardino Mountains, with the largest growth reductions in the western part of the range where ozone exposure is highest. Needle retention is also somewhat lower at high ozone sites. Lower annual precipitation since 1950 may have some impact on long-term growth reductions, and short-term growth reductions induced by drought are an important component of long-term growth reductions at sites with high ozone exposure. An ozone-climate stress complex may be responsible for recent reductions in the growth of bigcone Douglas fir.  相似文献   

9.
During late summer of 1996 and 1997 we examined ozone-induced foliar injury in a plantation of 111 black cherry trees (ramets) comprising 15 clones originating from wild ortets growing in the Allegheny National Forest, Pennsylvania, and the Monongahela National Forest, West Virginia. The experimental plantation was a clonal seed orchard in Centre County, Pennsylvania, started in 1971 using ortet buds grafted onto seedling rootstocks of mixed origin. Clones differed significantly in severity of foliar injury symptoms (F=31.83, p<0.001). One clone (R-12) had significantly more foliar injury with >50% leaf area affected than other clones during both years. In contrast, clone R-14, which is from the same area in northcentral Pennsylvania as R-12, exhibited significantly less injury (LAA<6%). Although ambient O(3) concentrations were similar in both years, foliar injury was significantly greater (15.7%) in 1996 than in 1997 (9.9%). This is probably explained by lower stomatal conductance in 1997 caused by drier and hotter weather patterns in June and July of that year. Despite very different weather patterns and overall levels of injury in 1996 and 1997, mean clonal injury was significantly correlated between both years of assessment (r=0.92, p<0.001). Within tree crowns, foliage in lower and inner crown positions was significantly more injured than foliage in upper and exterior crown positions. There was no evidence of geographically based population differences in sensitivity to foliar O(3) injury. On the contrary, results demonstrate that wild genotypes of proximal geographic origin may differ greatly in sensitivity.  相似文献   

10.
This paper describes a relationship between ozone exposure, biomass, visual symptoms and a chlorophyll a fluorescence performance index for young beech trees (Fagus sylvatica). The plants were exposed to four levels of ozone in open-top fumigation chambers (50, 85, 100% of ambient, and 50% of ambient+30 nl l(-1) ozone) that fluctuated in parallel with ambient ozone during a single growing season. The trees were fumigated in the four treatments with ozone levels corresponding to an AOT40 (accumulated exposure above a threshold of 40 nl l(-1)) of 0.01, 3.35, 7.06 and 19.70 microl l(-1) h, respectively. Highly significant differences were found between the 50% of ambient+30 nl l(-1) ozone treatment and all other treatments, with a 70.5% reduction in primary photosynthetic performance, as measured with the PI index. The reduction of the PI values demonstrated a high correlation with visual symptom development (r(2)=0.98), and by the end of September with biomass loss (r(2)=0.99). A significant ozone exposure-response relationship was found between AOT40 and primary photochemistry (r(2)=0.97). Thus, analysis of PI provides an alternative method for regional monitoring of tree health within the context of the currently employed AOT40.  相似文献   

11.
The main use of air quality forecast (AQF) models is to predict ozone (O3) exceedances of the primary O3 standard for informing the public of potential health concerns. This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations. These exposure indices include two concentration-based O3 indices, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations, respectively), and three cumulative exposure-based indices, SUM06 (the sum of all hourly O3 concentrations  0.06 ppm), W126 (hourly concentrations weighed by a sigmoidal weighting function), and AOT40 (O3 concentrations accumulated over a threshold of 40 ppb during daylight hours). During a three-month simulation (July–September 2005), the model over predicted the M7 and M12 values by 8–9 ppb, or a NMB value of 19% and a NME value of 21%. The model predicts a central belt of high O3 extending from Southern California to Middle Atlantic where the seasonal means, M7 and M12 (the seasonal means of daytime 7-h and 12-h O3 concentrations), are higher than 50 ppbv. In contrast, the model is less capable of reproducing the observed cumulative indices. For AOT40, SUM06 and W126, the NMB and NME values are two- to three-fold of that for M7, M12 or peak 8-h O3 concentrations. The AOT40 values range from 2 to 33 ppm h by the model and from 1 to 40 ppm h by the monitors. There is a significantly higher AOT40 value experienced in the United States in comparison to Europe. The domain-wide mean SUM06 value is 14.4 ppm h, which is about 30% higher than W126, and 40% higher than AOT40 calculated from the same 3-month hourly O3 data. This suggests that SUM06 and W126 represent a more stringent standard than AOT40 if either the SUM06 or the W126 was used as a secondary O3 standard. Although CMAQ considerably over predicts SUM06 and W126 values at the low end, the model under predicts the extreme high exposure values (>50 ppm h). Most of these extreme high values are found at inland California sites. Based on our analysis, further improvement of the model is needed to better capture cumulative exposure indices.  相似文献   

12.
Chronic exposure to ozone (O(3)) air pollution can reduce yield in wheat; however, little is known concerning the effects of O(3) stress on kernel development. A field study was conducted to investigate the effects of chronic O(3) exposure on kernel-growth components of two soft red winter-wheat genotypes (Seven and MD5518308). Five air-quality treatments, including charcoal-filtered air (CF), non-filtered air (NF), NF + 20, and NF + 40 and NF + 80 nl O(3) liter(-1) air were applied 4 h d(-1), 5 d wk(-1) through maturity. In the case of the NF + treatments, O(3) was added to existing ambient O(3) levels. Spike samples were collected 16, 20, 24, 28, and 32 days after anthesis (DAA). Linear and quadratic equations were fitted to kernel-weight data to estimate kernel-growth rate (KGR) and kernel-fill duration (KFD). Effective filling period (EFP) and assimilate utilization (AU) were also determined. Rates of growth for individual kernels were 0.74 mg d(-1) and 1.07 mg d(-1) for the NF + 80 and CF treatments, respectively. The NF + 80 nL litter(-1) O(3) treatment significantly reduced KGR and AU compared with the CF treatment. Severn had a significantly loger KFD than MD5518308, but O(3) had no significant effect on KFD of either genotype. Each genotype had similar EFP values, and O(3) had no significant effect on EFP. Linear relationships between O(3) exposure and kernel weight suggests that O(3) effects on kernel weight begin soon after anthesis in MD5518308, but, in Severn, O(3) has a greater effect on kernel weight during the later stages of kernel development. These data suggest that decreased economic yield associated with chronic O(3) exposure is primarily the result of decreased KGR.  相似文献   

13.
A multi-variate, non-linear statistical model is described to simulate passive O3 sampler data to mimic the hourly frequency distributions of continuous measurements using climatologic O3 indicators and passive sampler measurements. The main meteorological parameters identified by the model were, air temperature, relative humidity, solar radiation and wind speed, although other parameters were also considered. Together, air temperature, relative humidity and passive sampler data by themselves could explain 62.5-67.5% (R(2)) of the corresponding variability of the continuously measured O3 data. The final correlation coefficients (r) between the predicted hourly O3 concentrations from the passive sampler data and the true, continuous measurements were 0.819-0.854, with an accuracy of 92-94% for the predictive capability. With the addition of soil moisture data, the model can lead to the first order approximation of atmospheric O3 flux and plant stomatal uptake. Additionally, if such data are coupled to multi-point plant response measurements, meaningful cause-effect relationships can be derived in the future.  相似文献   

14.
Two very different types of approaches are currently in use today for indicating risk of ozone damage to vegetation in Europe. One approach is the so-called AOTX (accumulated exposure over threshold of Xppb) index, which is based upon ozone concentrations only. The second type of approach entails an estimate of the amount of ozone entering via the stomates of vegetation, the AFstY approach (accumulated stomatal flux over threshold of Y nmol m(-2) s(-1)). The EMEP chemical transport model is used to map these different indicators of ozone damage across Europe, for two illustrative vegetation types, wheat and beech forests. The results show that exceedences of critical levels for either type of indicator are widespread, but that the indicators give very different spatial patterns across Europe. Model simulations for year 2020 scenarios suggest reductions in risks of vegetation damage whichever indicator is used, but suggest that AOT40 is much more sensitive to emission control than AFstY values.  相似文献   

15.
Ozone fumigations that mimic ambient ozone distributions facilitate the development of links between
  • 1.(1) vegetative effects results that are generated in the laboratory and the field and
  • 2.(2) predictive effects models that depend upon ambient air quality data.
Experimental exposure profiles were constructed from a readily available ambient air quality data base (i.e. EPA SAROAD). Air quality data from selected monitoring sites were characterized over the 5-month growing season by identifying
  • 1.(a) the number of occurrences of hourly ozone concentrations equal to or above 0.07 ppm,
  • 2.(b) the number of days of each episode,
  • 3.(c) the number of days between episodes and
  • 4.(d) the rate of rise and decline of the daily ozone concentrations.
An episodic profile was constructed incorporating the information into a representative 30-day ozone exposure pattern in which the concentration was changed on an hourly basis. In order to compare treatments having equivalent exposures (sum of hourly ozone concentrations equal to or above a minimum value) but dissimilar temporal distributions of hourly concentrations, a second profile was created. This profile was characterized by a repeated daily incremental rise and decline in ozone concentration that had the same hourly maximum concentration each day. The use of experimental exposure profiles mimicking ambient air quality characteristics and applied under controlled experimental conditions permits the examination of important exposure parameters on plant response.  相似文献   

16.
Field-grown black cherry (Prunus serotina Ehrh.) seedlings were treated with the antioxidant ethylenediurea (EDU) to evaluate height, diameter, and above-ground dry-weight biomass growth response to ambient ozone over four years. Nine blocks with 44 trees/block were used in a randomized complete block design with three foliar spray treatments: (1) 1000 ppm EDU mixed with a surfactant and water; (2) surfactant mixed with water; and (3) water only. In each growing season treatments were applied seven times at approximately 10-day intervals. Repeated measures analysis of variance indicated significant (P< or =0.05) treatment and year effects for log-transformed height and diameter growth over the four-year period. After four years, EDU-treated trees were approximately 17% taller and stem diameters were 21% greater than non-EDU-treated trees. Total above-ground dry-weight biomass at the end of four years was 47% greater for EDU-treated trees compared to non-EDU-treated trees.  相似文献   

17.
Tropospheric ozone concentrations regarded as harmful for human health are frequently encountered in Central Europe in summertime. Although ozone formation generally results from precursors transported over long distances, in urban areas local effects, such as reactions due to nearby emission sources, play a major role in determining ozone concentrations. Europe-wide mapping and modeling of population exposure to high ozone concentrations is subject to many uncertainties, because small-scale phenomena in urban areas can significantly change ozone levels from those of the surroundings. Currently the integrated assessment modeling of European ozone control strategies is done utilizing the results of large-scale models intended for estimating the rural background ozone levels. This paper presents an initial study on how much local nitrogen oxide (NOx) concentrations can explain variations between large-scale ozone model results and urban ozone measurements, on one hand, and between urban and nearby rural measurements, on the other. The impact of urban NOx concentrations on ozone levels was derived from chemical equations describing the ozone balance. The study investigated the applicability of the method for improving the accuracy of modeled population exposure, which is needed for efficient control strategy development. The method was tested with NOx and ozone measurements from both urban and rural areas in Switzerland and with the ozone predictions of the large-scale photochemical model currently used in designing Europe-wide control strategies for ground-level ozone. The results suggest that urban NOx levels are a significant explanatory factor in differences between urban and nearby rural ozone concentrations and that the phenomenon could be satisfactorily represented with this kind of method. Further research efforts should comprise testing of the method in more locations and analyzing the performance of more widely applicable ways of deriving the initial parameters.  相似文献   

18.
Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO2 (0.08–0.10 ppm for 3 h) immediately prior to exposure to O3 (0.08–0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O3 on vegetation based on knowledge of response to O3 alone may be seriously flawed.  相似文献   

19.
This study describes a quantitative relationship between mean O3 flux density and the length of exposure needed for the occurrence of visual injury to Phaseolus vulgaris L. Similar relationships were found for 14 day old and 6 week old plants using a whole leaf gas exchange cuvette system. Cultivars Seafarer (O3 sensitive) and Gold Crop (O3 resistant) exhibited similar responses at flux densities > 3 mg m−2 h−1 but only Seafarer was injured below this flux density. O3 concentration and length of exposure period alone did not contain sufficient information to describe the onset of visual foliar injury. The use of O3 concentrations in excess of normal ambient conditions compensated for low leaf conductances so that flux densities in the cuvette were similar to those found in the field.  相似文献   

20.
Local ozone concentration and visible foliar injury were measured over the 1994 growing season on open-grown black cherry (Prunus serotina Ehrh.) trees of varying size (age) within forest stands and adjacent openings at a site in north-central Pennsylvania. Relationships were determined between visible ozone injury and ozone exposure, as well as calculated between injury and ozone uptake expressed as the product of stomatal conductance and ozone concentration. In addition, simultaneous measurements of visible symptoms and leaf gas exchange were also conducted to determine the correlation between visible and physiological injury and ozone exposure. By September, the amount of leaf area affected by visible foliar ozone injury was greatest for seedlings (46%), followed by canopy trees (20%) and saplings (15%). A large amount of variability in foliar ozone symptom expression was observed among trees within a size class. Sum40 and Sum60 (ozone concentration > 40 and > 60 nl liter(-1)) cumulative exposure statistics were the most meaningful indices for interpretation of foliar injury response. Seedlings were apparently more sensitive to ozone injury than larger trees because their higher rates of stomatal conductance resulted in higher rates of ozone uptake. Seedlings also had higher rates of early leaf abscission than larger trees with an average of nearly 30% of the leaves on a shoot abscised by 1 September compared to approximately 5% for larger trees. However, per unit ozone uptake into the leaf, larger trees exhibited larger amounts of foliar injury. The amount of visible foliar injury was negatively correlated (r(2) = 0.82) with net photosynthetic rates, but was not related to stomatal conductance. Net photosynthesis and stomatal conductance thus became uncoupled at high levels of visible foliar injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号