首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One month old soybean (Glycine max (L.) Merrill) cv. 'Williams' plants were exposed to nitrogen dioxide (NO2 at 0.1, 0.2, 0.3, and 0.5 microl liter(-1) and carbon filtered air (control), 7 h per day for five days, under controlled environment. Data were collected on net photosynthetic rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately following the fifth day of exposure and 24 h after termination of exposure. Chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (tot Ch) and foliar nitrogen (N) were measured before and after exposures. Growth characteristics--relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), and root shoot ratio (RSR) -- were computed for treated plants using standard growth equations. Increases of 18% and 23% in PN were observed immediately following exposure to 0.2 microl liter(-1) NO2 and after 24 h recovery period, respectively. With 0.5 microl liter(-1) NO2 treatment, reductions in PN of 23% and 50% were observed, immediately after exposure and following 24 h recovery, respectively. DR rates with 0.2 l liter(-1) treatment were higher than the control. Chlorophyll a and tot Ch showed significant reduction with 0.5 microl liter(-1) NO2 treatment. The percent reduction in Ch a and tot Ch with 0.5 microl liter(-1) NO2 were 45% and 47%, respectively. Increases in foliar nitrogen content after 0.2 and 0.3 microl liter(-1) NO2 treatments were 46% and 69%, respectively. Nitrogen dioxide at 0.5 microl liter(-1) reduced RGR and NAR by 47% and 51%, respectively. Leaf area ratio was 42% higher in 0.5 microl liter(-)1 NO2 treated plants, compared with the control; this increase was insufficient to compensate for the decrease in NAR resulting in a net decline in RGR. Nitrogen dioxide up to 0.2 microl liter(-1) increased PN and foliar-N content of soybean. With 0.5 microl liter(-1) NO2, significant decreases were observed in PN, leaf chlorophyll, foliar-N, NAR and RGR. Nitrogen dioxide up to 0.2 microl liter(-)1 has a favorable influence on overall growth characteristics of soybean; however, inhibitory effects were seen with NO2 treatment at 0.5 microl liter(-1).  相似文献   

2.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

3.
The response of shrubs of Larrea tridentata (DEC) Coville (creosotebush) exposed to sulphur dioxide (SO(2)) was evaluated using in situ plants of the Majove Desert. Larrea was exposed to acute levels of 0.3 to 2.0 microl litre(-1) SO(2) for periods up to 13 days using field chambers or an open-air fumigation system. Plants exposed in the spring exhibited considerable leaf injury (necrosis and defoliation) when exposed to 2.0 microl litre(-1) SO(2), and in the autumn had leaf injury when exposed to >0.4microl litre(-1) SO(2). Injured plants had higher transpiration rates, less negative water pressure potentials, and/or lower photosynthetic rates than control plants. It is likely that Larrea would not be injured by the typically low SO(2) concentrations and dry environmental conditions of the Mojave Desert. However, if injury were to occur, it would be accompanied by changes in plant-water relations and photosynthesis, followed by recovery after the SO(2) stress was removed.  相似文献   

4.
Thirty-five cultivars of pot plants of 20 families were exposed for 50-64 days in a greenhouse facility to either 1 microl litre(-1) NO with 0.5 microl litre(-1) NO2, or 1 microl litre(-1) NO2 with 0.1 microl litre(-1) NO for 15 h each day, with air which was free from these gases as the reference. A sensitivity ranking of the pot plants was compiled, with the highest priority on visible injuries, followed by growth reductions, primarily as a response to the NO-dominated exposures, simulating the NOx-polluted environment in direct-fired, CO2-enriched greenhouses. This treatment reduced the leaf dry weight more than the number and area of the leaves. Twenty-two cultivars were significantly injured, while two (Hibicus sp, Epipremnum pinnatum, green) were significantly improved. The NOx-sensitivity of pot plants was highest in cultivars with variegated, small or narrow leaves, and in the Moraceae family. Nine cultivars (Ficus elastica 'Robusta', F. benjamina, F. pumila 'Sonny', Dieffenbachia maculata 'Camilla', F. elastica 'Tineke', Epipremnum pinnatum 'Marble Queen', Begonia elatior 'Nelson', Cyclamen persica, Poinsettia 'Mini') were specifically sensitive to the NO-containing exposure; six were specifically sensitive to the NO2-containing exposure (F. elastica 'Robusta', Asparagus den. 'Sprengeri', Hedera helix 'Shamrock', Aspledium nidus, Aster novo-belgii, Hypoestes phyl. 'Betina'); and 12 (Soleirolia soleirolii, Asparagus den. 'Sprengeri', H. helix 'Ester', Codiaeum 'Pictum', Rosa 'Minimo Red', F. benjamina 'Starlight', Saintpaulia ionantha 'light blue', F. pumila, Rhododendron simsii, H. helix 'Shamrock', Hibiscus sp., E. pinnatum) were equally sensitive to mixtures dominated by either gas, as measured by at least one response parameter.  相似文献   

5.
The response to ozone (O(3)) of greenness, in terms of estimated total chlorophyll concentration (Chl), of leaves at three plant canopy levels was studied in tomato (Lycopersicon esculentum Mill.) over a 10-day period following O(3) exposure. Plants of the cultivars 'New Yorker' and 'Tiny Tim' were grown at 25/15 degrees or 30/15 degrees day/night temperatures in growth chambers and exposed to 0.00, 0.08, 0.16 or 0.24 microl litre(-1) O(3) for 7 h day(-1) for four consecutive days in controlled environment exposure chambers. Measurement of Chl in the top, middle and bottom canopy leaves with a calibrated SPAD-501 leaf greenness meter indicated that the growth temperatures tested did not significantly influence the response of Chl to O(3). Ozone-induced loss of Chl was widespread in the entire foliage canopy, including foliage which did not demonstrate visible injury. In both cultvars the Chl in leaves at all three canopy levels declined as a function of increasing O(3) concentration when measured 2, 4, 6, 8 and 10 days after the exposure period. However, the slopes for leaves in the top and middle canopies decreased with increasing time after exposure. An analysis of this apparent Chl recovery indicated that leaves in the top and middle canopies exposed to 0.16 and 0.24 microl litre(-1) increased in greenness at a rapid rate after the marked initial decline associated with O(3) treatment. The apparent recovery of the top canopy may have reflected the growth of new leaves and their inclusion in the measurements, but this was not the case for the middle canopy for which the same leaves were measured throughout the post-exposure period. Bottom canopy leaves did not demonstrate significant recovery of Chl.  相似文献   

6.
Spring barley (Hordeum vulgare cv. Klaxon) plants, 9 days old, were exposed to 0.05, 0.10 or 0.15 microl litre(-1) ozone (O3) for 12 days. Fumigation was administered for 7 h between 9.00 h and 16.00 h each day. Using conventional IRGA equipment, the carbon dioxide exchange rate (CER) was shown to decrease with increasing concentration of O3 during the exposure period, falling to 60% of the control value at the highest O3 concentration. Transpiration rates and stomatal conductance showed similar trends. Light saturation curves, obtained using a leaf disc oxygen electrode, demonstrated that O3-treated leaves had lower apparent quantum yields (QY) and generally lower rates of O2 evolution at saturating light and CO2 levels. Oscillations in chlorophyll a fluorescence, normally observed in control plants, could not be detected after O3 treatment and could only be restored to some extent by feeding the phosphate sequestering agent D-mannose to the leaves.  相似文献   

7.
The effects of potassium fertilization and ozone stress were investigated in a clone of Picea abies (L.) Karst, by studies of the uptake of CO(2) by the crowns, the element content, on leaching of the youngest needles, and the longevity of the needles. All plants were exposed to 0.075 microl litre(-1) SO(2) from January to April 1986. The average ozone concentrations applied during the subsequent growing season (May-December) were 0, 0.027, 0.050 and 0.100 microl litre(-1). Half of the trees received liquid fertilizer applications from April to July 1986. CO(2) uptake by the crowns was significantly reduced in non-fertilized plants at ozone doses of 100-200 microl litre(-1) h, whereas similar reductions were recorded in fertilized plants only above an ozone dose of 300 microl litre(-1) h. Independent of the fertilization, however, the concentrations of calcium, magnesium and nitrogen in the needles increased in parallel with the ozone dose, whilst potassium, phosphorus and sulphur showed little response to ozone. In both nutrient regimes, the diffusive loss of elements from chloroform-washed needles was similar and tended to be reduced at the highest ozone concentration, when relating the leachate to the corresponding element content in the needles. Needles formed in the highest ozone treatment were significantly shed during the succeeding year, regardless of the nutrient supply. It appears that increased potassium supply has little compensating effect on ozone stress in spruce.  相似文献   

8.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

9.
Phaseolus vulgaris cv. Kinghorn Wax seedlings grown in darkness at 25 degrees C for 7 days with half strength Hoagland's nutrient solution containing no nitrogen, were transferred to lit continuous stirred tank reactors (CSTRs) in atmospheres containing 0 or 0.3 ppm NO(2) and irrigated with a nutrient solution containing 0 or 5 mm nitrate as sole nitrogen source and allowed to grow for a period of up to 5 days in a 14 h photoperiod. Exposure to NO(2) increased total Kjeldahl nitrogen in the leaves. Further, the exposure to NO(2) increased chlorophyll content from day 3 onwards and inhibited the leaf dry weight substantially on days 4 and 5. The primary leaves of the seedlings exposed to 0.3 ppm NO(2) and supplied with nitrate accumulated some nitrite after 5 days of exposure. Some of the seedlings were returned from CSTRs to growth chambers and allowed to grow for a further period of 5 days in a 14 h photoperiod without NO(2). The growth which developed after the NO(2) exposure growth period, as measured by fresh and dry weights of the leaves, was significantly less in NO(2)-exposed plants than in nitrate-grown plants. The experiments demonstrate that the leaves of greening seedlings are able to assimilate NO(2) and that a reduction in leaf dry weight by prolonged NO(2) exposure in the presence of nutrient nitrate can be associated with nitrite accumulation, and that NO(2) has a carry-over effect beyond the duration of NO(2) exposure. It is apparent that NO(2) induces some durable biochemical or cytological aberration in the presence of nutrient nitrate, which adversely affects subsequent leaf growth.  相似文献   

10.
Experiments were conducted to examine the effects of the anti-ozonant ethylenediurea (EDU) and chronic ozone (O3) exposure on leaf physiology and senescence in an O3-sensitive potato cultivar (Solanum tuberosum L. cv. Norland). A dose-response experiment showed that an EDU concentration of 15 mg l(-1) soil (given as a soil drench) provided complete protection from accelerated foliar senescence induced by exposure to 0.1 microl l(-1) O3 for 5 h day(-1) for 11 days. EDU doses of 45 and 75 mg active ingredient l(-1) soil also gave protection but were associated with symptoms of toxicity and delayed senescence. In further experiments, plants were given 0 or 15 mg EDU l(-1) soil and exposed to clean air or 0.1 microl l(-1) O3 for 5 h day(-1) for 14 days. Chronic O3 exposure in the absence of EDU resulted in accelerated foliar senescence, characterized by early declines in net photosynthesis and Rubisco quantity in O3-treated plants relative to controls. EDU in the presence of O3 gave complete protection against symptoms of accelerated senescence. Senescence was not delayed in plants that received EDU in the absence of O3, and no symptoms of EDU toxicity were evident. The results suggest that EDU-induced tolerance to O3 was not based on 'anti-senescent' properties of this anti-ozonant.  相似文献   

11.
Water-stressed and well-watered soybean (Glycine max cvs. Williams and Corsoy) plants were exposed to increasing seasonal doses of ozone (O(3)) using open-top field chambers and ambient air plots. Chamber O(3) treatments included charcoal filtered (CF) air, non-filtered (NF) air, NF + 0.03, NF + 0.06 and NF + 0.09 microl litre(-1) O(3). Soil water potentials measured at 25 and 45 cm averaged -0.40 MPa and -0.05 MPa, respectively, for the plots in the water-stressed and well-watered series. Total root length/core, root length densities, and biomasses (dry weights) were determined. With Williams, a very popular cultivar in recent years, total root length for all O(3) treatments averaged 58% more under water-stress conditions than in well-watered plots, but the range was from 136% to 11% more for NF air and NF + 0.09 microl litre(-1) O(3), respectively. Increasing the O(3) exposure dose did not affect root lengths or weights in the well-watered series. With Corsoy, water stress did not significantly increase root development. In both soil moisture regimes, with both cultivars, there was a linear decrease in seed yield and top dry weight as the O(3) exposure dose increased.  相似文献   

12.
The effects of exposing plants of Dryopteris filix-mas (L.) Schott, Phyllitis scolopendrium (L.) Newman and Polypodium vulgare L. to 60 nl litre(-1) (122 microg m(-3)) NO(2) for 37 weeks were investigated in a closed chamber fumigation system. There was no effect of NO(2) on the numbers of fronds produced for any species at any time during the exposure period. However, at the end of the study, there was a lower dry weight yield of green shoots of D. filix-mas and P. scolopendrium and a higher yield of green shoots of P. vulgare for plants in the NO(2) treatment as compared to control plants. These differences in shoot dry weights were not accompanied by an effect of NO(2) exposure on total plant dry weights.  相似文献   

13.
Field studies were conducted at USDA Beltsville Agricultural Research Center, Beltsville, Maryland, in 1984 and 1985 using open-top chambers to acquire information on the responses of 12 soybean (Glycine max L. Merr.) cultivars to O3 stress and to examine the interactions between maturity groups and O3 stress. Cultivars representing Groups III, IV, and V were exposed for approximately 3 months to charcoal-filtered air (CF) and nonfiltered air plus 40 nl litre(-1) O3 (NF + O3). Ozone was added 6 h d(-1), 5 d week(-1) for 13 weeks. The CF effectively reduced the accumulative oxidant exposure (AOX) to less than 1.0 microl litre(-1) h and the NF + O3 treatment approximately doubled the ambient AOX (16.7 microl litre(-1) h) to about 30 microl litre(-1) h. The AOX estimates the total O3 exposure above 30 nl litre(-1) during an entire growing season. Plant growth rates and relative growth rates were reduced by 17.0 and 14.4%, respectively, when averaged over cultivars. Based on growth rates, the Group III cultivars were the most affected by O3 stress. Averaged over cultivars, leaf expansion rates, leaf conductance, and transpiration rates were lower in the NF + O3 treatment compared to the CF control; however, wide variation was found with the stomatal results from field observations. Combined over years and cultivars, grain yield was reduced by an average of 12.5% by O3 stress with 3 of 12 cultivars showing significant reductions. Grain protein content was increased by 0.7% by O3 stress, but cultivar differences were equal to the differences caused by the O3 treatments. Grain oil content was unchanged by the O3 treatments. Group IV cultivars showed the greatest decrease in grain yield due to O3 stress. Multiple regression analyses were calculated using the difference between the CF and NF + O3 treatment as a measure of O3 stress. Significant positive relationships were found among net assimilation rates, plant growth rates, relative growth rates, and leaf expansion rates, which suggest that growth analysis characteristics would be useful in addition to yield in air pollution tolerance improvement studies with soybeans.  相似文献   

14.
Ten open-top chambers were used to obtain SO(2) concentration-response relationships for growth in wheat cv. Banks, and to study the associated sulphur accumulation. Two-week-old seedlings were exposed to 0.004, 0.042, 0.121, 0.256 or 0.517 microl litre(-1) SO(2) for 79 days, 4 h per day. Response variables measured included height, shoot weight, development stage, tiller number, ear weight per plant, average ear weight, total ear number and shoot sulphur concentration. All growth parameters were significantly negatively affected by SO(2) concentrations above and including 0.042 microl litre(-1). A highly significant positive correlation existed between shoot sulphur concentration and ambient SO(2) concentration.  相似文献   

15.
Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.  相似文献   

16.
Absorption of nitrogen dioxide (NO(2)) by various broad-leaved tree species was determined by the (15)N dilution method. The tree seedlings were continuously exposed to 0.3 ppm (microl litre(-1)) NO(2) or the mixture of 0.3 ppm NO(2) and 0.1 ppm O(3) for 30 days. The total amount of NO(2)-nitrogen absorbed by a seedling during the 30-day exposure period primarily depended on the size of the seedling. Among the tested tree species, three cultivars of Populus showed the highest rate of NO(2) absorption per unit leaf area, reaching as much as 0.3 mg N per dm(2) per day. The absorption rates for Populus cultivars were more than four times greater than those for Viburnum or Cinnamomum which had the lowest rate. A highly significant correlation was recognised between the rate of NO(2) absorption and the stomatal conductance among the species. Three cultivars of Populus which had the highest rates of NO(2) absorption were most susceptible to the mixture of NO(2) and O(3). On the contrary, Cinnamomum, Viburnum and Quercus, which showed the lowest rate of NO(2) absorption, were very tolerant to the mixed gas. These results indicate that the species difference in susceptibility to the mixture of NO(2) and O(3) was mainly determined by the difference in rate of absorption of these gases. Exposure to NO(2) alone had no detrimental effect on the tested tree species.  相似文献   

17.
The effects of SO(2) on species exhibiting Crassulacean Acid Metabolism (CAM) were determined with short term-high concentration 'acute' greenhouse exposures (0.6 to 3.0 microl liter(-1) (ppm) SO(2) for 2 and 8 h), and long term-low concentration 'chronic' field exposures (0.35 to 0.90 microl liter(-1) SO(2) for 32 to 79 h periodically over 7 to 13 days). In the acute greenhouse exposures, visible injury was observed on Opuntia basilaris Engelm. & Bigel., exposed to 2.0 microl liter(-1) SO(2), but no injury was observed on Ananas comosus (L.) Merr., Bryophyllum blossfeldiana Poelln., Bryophyllum pinnata (Lam.) Pers., or Bryophyllum tubiflora (Harv.) Hamet, exposed to up to 2.8 microl liter(-1) SO(2) for 8 h. Stomatal conductance during the exposures averaged 0.067+/-0.021mol(-2)s(-1) for Opuntia basilaris, 0.029+/-0.008mol(-2)s(-1) for Ananas comosus, and 0.029+/-0.008mol m(-2)s(-1) for Bryophyllum pinnata. Opuntia basilaris was injured early during the day, but not at night; with the injury appearing as a white necrotic banding across just fully expanded pads. Moderately injured pads would regreen beginning 1 to 2 weeks after exposure. In chronic field exposures, no visible injury from SO(2) was observed on Opuntia basilaris, Dudleya arizonica Rose or Agave deserti Engelm. plants, grown either with supplemental irrigation or natural rainfall. In addition, in the field SO(2) had no effect on CO(2) uptake, total sulfur content, transpiration, or tissue acidity in either the light or the dark, or in irrigated vs natural rainfall plots.  相似文献   

18.
Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture.  相似文献   

19.
Tomato and lettuce plants were exposed to vapour of the free acid of [14C-phenyl] 2,4-D at concentrations in the range 1-600 pg litre(-1) for periods of 6, 24 or 72 h. The rate of uptake of radiolabel by tomato was about twice that by lettuce at the same vapour concentration. Uptake rates were linearly related to external vapour concentration. The relationship between uptake and vapour concentration of 2,4-D for the two species was similar to published values for the butyl and iso-octyl esters. The distribution of herbicide residue in the plant immediately after exposure indicated that the apical leaves of lettuce are particularly active in assimilating vapour, whereas for tomato, leaf position had no influence. Forty days after exposure, both species showed symptoms of toxicity and reduction in shoot dry weight typical of similar doses of 2,4-D esters. It is concluded that the vapour of 2,4-D represents a potential hazard to susceptible plants, and that further work is needed to determine the conditions likely to lead to the production of vapour of the free acids of phenoxyalkanoic herbicides following spraying.  相似文献   

20.
The toxic effects of the phenylurea herbicide Isoproturon -IPU: (3-(4-isopropylphenyl)-1, 1-dimethylurea)-were studied on the colonization of periphytic diatom communities, within indoor microcosms consisting of a mixed biotope (water column and natural sediment) and two biological species-rooted macrophyte cuttings (Elodea densa) and benthic bivalve molluscs (Corbicula fluminea). The periphyton, essentially composed of diatoms, was collected on artificial substrata (glass slides) in the upper layers of the water column, after two periods of exposure (34 and 71 days). IPU was initially added in the water or in the sediment compartment, at two nominal concentrations (L1 and L2 levels) for each contamination source-5 and 20 microg litre(-1) and 100 and 400 microg kg(-1) in sediment (w/w) respectively. The effects of IPU on the density and community structure of periphytic diatoms are described. A marked reduction in the diatom density was observed after 34 days exposure to the lower concentration of IPU in the water (5 microg litre(-1)). For the L2 levels, the very small number of live cells present did not permit quantification of the diatom density. After 71 days, recovery in community parameters occurred for the two contamination levels of the sediment and water column sources. Samples collected in the experimental units contaminated with the L2 levels were dominated by heterotrophic and smaller diatom species, such as Sellaphora seminulum. Data treatment based on factorial discriminant analysis enabled us to distinguish the different contamination conditions, with only 11 species from the 130 taxa identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号