首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Alcaligenes eutrophus accumulated a terpolyester of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV), and 4-hydroxyvaleric acid (4HV) during cultivation with 4HV as carbon and energy source under nitrogen starvation. The polyester accumulated by wild-type strains under these conditions contained 4HV at a molar fraction of approximately 5 mol% only. A catabolic pathway of 4HV was postulated, which included the activation of 4HV to 4HV-CoA and a conversion of 4HV-CoA to 3HV-CoA. Tn5::mob-induced mutants were isolated fromA. eutrophus HF39, which were affected in 4HV and/or valeric acid catabolism. Among 83 mutants were 27 4HV-negative or 4HV-leaky mutants; two mutants were identified which accumulated a terpolyester with a molar fraction of 10.1 to 22.7 mol% 4HV. In addition, a further increase in the molar fraction of 4HV in poly(3HB-co-3HV-co-4HV) and a two- to fourfold increase in the PHA synthase activity were monitored in these mutants or others and also in HF39, if the cells were complemented with the hybrid plasmid pHP1014::PP1, which contained the PHA biosynthesis genes ofA. eutrophus H16. Application of mutagenesis plus recombinant DNA techniques resulted in the accumulation of a terpolyester with up to 30 mol% 4HV and with approximately equimolar fractions of 3HB, 3HV, and 4HV.  相似文献   

2.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

3.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

4.
Screening of a large number of bacteria revealed several strains, which utilize 1,4-butanediol and/or 4-hydroxybutyric acid (4HB) as a carbon source for growth and for synthesis of polyhydroxyalkanoic acids (PHA) containing 4HB as one constituent among others (mostly 3-hydroxybutyric acid). However, none of the wild-type strains investigated in this study was able to produce a homopolyester consisting solely of 4HB. Only several poly(3-hydroxybutyric acid)-leaky mutants ofAlcaligenes eutrophus strain JMP222 synthesized poly(4HB) homopolyester, which amounted to approximately 10% (w/w) of the cellular dry matter. If the PHA synthase structural gene ofA. eutrophus strain H16 was expressed in these mutants, the amount of poly(4HB) was increased to approximately 30% (w/w). The occurrence of poly(4HB) was demonstrated by gas chromatographic as well as1H and13C nuclear magnetic resonance spectroscopic analysis.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

5.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced at 30°C from various carbon sources byAlcaligenes eutrophus under batch-fed growth conditions. The production of P(3HB-co-3HV) from butyric and pentanoic acids was effective under nitrogenlimited conditions, and the conversion of carbon sources into copolyester was as high as 56 wt% at a C/N molar ratio of 40. In contrast, under excess-nitrogen conditions (C/N<10), cell growth was good, while P(3HB-co-3HV) production was partially inhibited. The production of P(3HB-co-3HV) from fructose and propionic acid was almost completely inhibited under excess-nitrogen conditions.  相似文献   

6.
The utilization of captured CO2 as a part of the CO2 capture and storage system to produce biopolymers could address current environmental issues such as global warming and depletion of resources. In this study, the effect of feeding strategies of CO2 and valeric acid on cell growth and synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in Cupriavidus necator was investigated to determine the optimal conditions for microbial growth and biopolymer accumulation. Among the studied CO2 concentrations (1–20 %), microbial growth and poly(3-hydroxybutyrate) accumulation were optimal at 1 % CO2 using a gas mixture at H2:O2:N2 = 7:1:91 % (v/v). When valeric acid was fed together with 1 % CO2, (R)-3-hydroxyvalerate synthesis increased with increasing valeric acid concentration up to 0.1 %, but (R)-3-hydroxybutyrate synthesis was inhibited at >0.05 % valeric acid. Sequential addition of valeric acid (0.05 % at Day 0 followed by 0.025 % at Day 2) showed an increase in 3HV fraction without inhibitory effects on 3HB synthesis during 4 d accumulation period. The resulting P(3HB-co-3HV) with 17–32 mol  % of 3HV is likely to be biocompatible. The optimal concentrations and feeding strategies of CO2 and valeric acid determined in this study for microbial P(3HB-co-3HV) synthesis can be used to produce biocompatible P(3HB-co-3HV).  相似文献   

7.
Bacterial synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer [P(3HB-co-3HV)] using the hydrolysate of rice straw waste as a carbon source was affected by the composition of the hydrolysate, which depends highly on the rice straw pretreatment condition. Acid digestion with 2 % sulfuric acid generated larger production of P(3HB-co-3HV) than 6 % sulfuric acid, but 3HV concentration in the copolymer produced with 2 % acid hydrolysate was only 8.8 % compared to 18.1 % with 6 % acid hydrolysate. To obtain a higher 3HV mole fraction for enhanced flexibility of the copolymer, an additional heating was conducted with the 2 % acid hydrolysate after removal of residual rice straw. As the additional heating time increased a higher concentration of levulinic acid was generated, and consequently, the mole fraction of 3HV in P(3HB-co-3HV) increased. Among the conditions tested (i.e., 20-, 40-, 60-min), 60-min additional heating following 2 % sulfuric acid digestion achieved the highest 3HV mole fraction of 22.9 %. However, a longer heating time decreased the P(3HB-co-3HV) productivity, probably due to the increased intermediates concentrations acting as inhibitors in the hydrolysates. Therefore, the use of additional heating needs to consider both the increase in the 3HV mole fraction and the decrease in the P(3HB-co-3HV) productivity.  相似文献   

8.
The feasibility of utilizing non edible rice (broken rice) for production of fine materials such as poly(3-hydroxybutyrate) (PHB) was considered as one of the alternative ways of keeping the environment clean for sustainable development. Thus, production of PHB from broken rice by simultaneous saccharification and fermentation (SSF) was investigated. During the SSF process, the rice (15% w/v) material was hydrolyzed to glucose, which was utilized by Cupriavidus necator for growth and production of PHB. The PHB content reached 38% at 58 h fermentation. The PHB had weight average molar mass (Mw) and polydipersity index of 3.82 × 105 (g/mol) and 4.15, respectively. Differential calorimetric scan of the PHB showed a melting temperature (Tm) of 176 °C. Given that the PHB was a homopolymer (which consisted of (R)-3-hydroxybutyric acid monomers), it was thought that broken rice could be a raw material for production of both PHB and (R)-3-hydroxybutyric acid. This SSF process would not only help in the utilization of broken rice or non edible rice, but would also serve as a model for utilization of other raw materials that contain starch for production of PHB.  相似文献   

9.
Solution-grown single crystals of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] were hydrolyzed by polyhydroxybutyrate (PHB) depolymerase from Ralstonia pickettii T1. Enzymatic degradation proceeded from the edges of lamellar crystals, yielding serrated contour and small crystal fragments. Gel permeation chromatography analysis revealed that the molecular weights of the crystals decreased during enzymatic degradation, suggesting that the enzymatic hydrolysis of chain-folding regions at the crystal surfaces occurred in addition to the enzymatic degradation at crystal laterals or edges. After P(3HB-co-4HB) single crystals were aminolysed in 20% aqueous methylamine solution to remove the folded-chain regions and enzymatic degradation by lipase from Rhizopus oryzae to remove 4HB components at crystal surfaces of single crystal aminolyzed, it was found that a small amount (up to ca. 2 mol%) of 4HB component can be incorporated into the P(3HB) mother crystal lattice irrespective of the 4HB content.  相似文献   

10.
Four polyhydroxyalkanoate (PHA) depolymerases were purified from the culture fluid ofPseudomonas lemoignei: poly(3-hydroxybutyrate) (PHB), depolymerase A (M r , 55,000), and PHB depolymerase B (M r , 67,000) were specific for PHB and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) as substrates. The third depolymerase additionally hydrolyzed poly(3-hydroxyvalerate) (PHV) at high rates (PHV depolymerase;M r , 54,000). The N-terminal amino acid sequences of the three purified proteins, of a fourth partially purified depolymerase (PHB depolymerase C), and of the PHB depolymerases ofComamonas sp. were determined. Four PHA depolymerase genes ofP. lemoignei (phaZ1,phaZ2,phaZ3, andphaZ4) have been cloned inEscherichia coli, and the nucleotide sequence ofphaZ1 has been determined recently (D. Jendrossek, B. Müller, and H. G. Schlegel,Eur. J. Biochem. 218, 701–710, 1993). In this study the nucleotide sequences ofphaZ2 andphaZ3 were determined.PhaZ1,phaZ2, andphaZ4 were identified to encode PHB depolymerase C, PHB depolymerase B, and PHV depolymerase, respectively.PhaZ3 coded for a novel PHB depolymerase ofP. lemoignei, named PHB depolymerase D. None of the four genes harbored the PHB depolymerase A gene, which is predicted to be encoded by a fifth depolymerase gene ofP. lemoignei (phaZ5) and which has not been cloned yet. The deduced amino acid sequences ofphaZ1–phaZ3 revealed high homologies to each other (68–72%) and medium homologies to the PHB depolymerase gene ofAlcaligenes faecalis T1 (25–34%). Typical leader peptide amino acid sequences, lipase consensus sequences (Gly-Xaa-Ser-Xaa-Gly), and unusually high proportions of threonine near the C terminus were found in PhaZ1, PhaZ2, and PhaZ3. Considering the biochemical data of the purified proteins and the amino acid sequences, PHA depolymerases ofP. lemoignei are most probably serine hydrolases containing a catalytical triad of Asp, His, and Ser similar to that of lipases. A comparison of biochemical and genetic data of various eubacterial and one eukaryotic PHA depolymerases is provided also.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

11.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

12.
A consortium of microorganisms from oil polluted wastewater sample was cultivated to promote polyhydroxyalkanoate (PHA) accumulation before subjecting the mixed cultures to sucrose density gradient ultracentrifugation. This resulted in the fractionation of the bacterial cells according to their physical features such as size, morphology and/or densities. An isolate was identified as Burkholderia sp. USM (JCM15050), which was capable of converting palm oil products [crude palm kernel oil (CPKO), palm olein (PO), palm kernel acid oil (PKAO), palm stearin (PS), crude palm oil (CPO), palm acid oil (PAO) and palm fatty acid distillate (PFAD)], fatty acids and various glycerol by-products into poly(3-hydroxybutyrate) [P(3HB)]. Up to 70 and 60 wt% of P(3HB) could be obtained when 0.5%(v/v) CPKO and glycerol was fed, respectively. Among the various fatty acids tested, lauric acid followed by oleic acid and myristic acid gave the best cell growth and PHA accumulation. Compared to Cupriavidus necator H16, the present isolate showed better ability to grow on and produce PHA from various glycerol by-products generated by the palm oil industry. This study demonstrated for the first time an isolate that has the potential to utilize palm oil and glycerol derivatives for the biosynthesis of PHA.  相似文献   

13.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

14.
The municipal wastes were utilized as substrate for polyhydroxyalkanoate (PHA) using two strains of Bacillus licheniformis (PHAs-007, wild type and M2-12, mutant). Municipal wastes were subjected to separate wastewater and biosolid. Municipal biosolid was digested by anaerobic bacteria thereafter only the supernatant with soluble organic compounds was subjected into the PHA-producing reactor containing municipal wastewater. The mutant strain M2-12 gave the highest value of biomass (42.0 ± 2.0 g/L) and PHA concentration (37.4 ± 1.0 g/L with 88.9 % of dry cell weight, DCW) and reduced 76.5 % of soluble chemical oxygen demand after 60 h of cultivation. The value of pH, biochemical oxygen demand and total solid of the reclaimed wastewater after PHA recovery was 7.1, 20 and 97 mg/L, respectively. Moreover, the polymers produced by both strains of B. licheniformis were characterized. The resultant polymer from B. licheniformis PHAs-007 and M2-12 cultivated in the PHA-producing reactor was identified as poly-3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB-co-3HV)] and poly-3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB)], respectively. The results suggesting that the production of PHA by municipal wastes is feasible thus the PHA production stage can be integrated in waste treatment to produce PHA and treated municipal wastes at the same time.  相似文献   

15.
A fed-batch process was developed, which allowed biotechnological production of the homopolyester poly(3-hydroxyvaleric acid) [poly(3HV)], in a mineral salts medium containing valeric acid as carbon source and complex nutrients as supplements byChromobacterium violaceum at a 10- and 300-L fermentation scale. This process yielded up to 40 g dry cell matter per L fermentation broth, and the cells contained up to 70% (w/w) poly(3HV). Poly(3HV), which was extracted from the cells with chloroform and was precipitated from this solvent with ethanol, was processed to test bars by injection molding or by press processing and to fibers by melt spinning. The unprocessed and processed poly(3HV) material was characterized with respect to the molecular weight and with respect to thermal, rheological, and mechanical properties. It was shown that it is possible to process biodegradable poly(3HV) thermoplastically and to obtain a polymer suitable for applications with low strength requirements.  相似文献   

16.
The environmental impact caused by the disposal of plastics has motivated the development of biodegradable materials. Recent studies showed that supplementation with oleic acid (OA) in cultures producing poly(3-hydroxybutyrate), P(3HB), increased the polymer productivity. However only few studies have shown the properties and biodegradation profile of the polymer obtained. This research investigated the influence of OA concentration on the biodegradation of the P(3HB) obtained from cultures of Cupriavidus necator. The crystallinity of the casting films determined by differential scanning calorimetry (DSC) was reduced from 70% (0 g L−1 of OA) to 52% (3.0 g L−1 of OA). A reduction of 11 °C in the melting temperature was observed with 3.0 g L−1 of OA. The kinetic of biodegradation was: 3.0 > 1.5 > 0.9 > 0.3 > 0 g L−1 of OA.  相似文献   

17.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

18.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

19.
In an attempt to increase the range of analytical techniques able to monitor ultimate degradation stages of degradable, biodegradable, and bioresorbable polymers, capillary zone electrophoresis (CZE) was used to analyze tentatively oligomers formed during thermal condensation of lactic, glycolic, anddl-3-hydroxybutyric acids. The influence of the buffer and of capillary coating are discussed in terms of electroosmotic flow. Typical analyses were first performed using a 0.1M borate buffer (pH 8.9) with anodic injection. In the case of lactic acid, seven peaks were well separated, while only three peaks were observed for glycolic acid. A more complex situation was found fordl-3-hydroxybutyric acid oligomers. The first five peaks were split. The major component of each doublet was attributed to hydroxy-terminated oligomers, whereas the satellite peaks were assigned to oligomers bearing a C=C double bond at the noncarboxylic terminus. CZE of pH-sensitive lactic acid oligomers was also performed in 0.05M phosphate buffer (pH 6.8) with cathodic injection after physical coating of the fused-silica capillary with DEAE-Dextran. The buffer-soluble fraction present in lactic acid oligomers was extracted from a dichloromethane solution. Extracts issued from different batches of lactic acid condensates gave a constant water-solubility pattern whose cutoff was at the level of the decamer. CZE was also used to monitor thein vitro aging of aqueous solutions of these water-soluble oligomers. The lactyllactic acid dimer appeared more stable than higher oligomers, thus showing that ultimate stages of the degradation did not proceed at random. These physicochemical characteristics were used to complement the degradation pathway based on diffusion of oligomers duringin vitro aging of large size lactic acid plates made by compression molding. CZE data showed that lactic acid was the only component which was released in the aqueous medium during degradation.Presented by C.B. at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, NH, USA.  相似文献   

20.
Poly(hydroxyalkanoates) (PHAs) are a class of bacterially-derived polymers that are naturally biodegradable through the action of extracellular depolymerase enzymes secreted by a number of different bacteria and fungi. In this paper we describe the development of topographical imaging protocols (by both scanning electron microscopy; SEM, and confocal microscopy; CM) as a means of monitoring the biodegradation of solution cast films of poly(3-hydroxybutanoate-co-3-hydroxyhexanoate) (P3HB/3HHx) and medium-chain-length (mcl-) PHA. Pseudomonas lemoignei and Comamonas P37C were used as sources for PHA depolymerase enzymes as these bacteria are known to degrade at least one of the polymers in question. SEM revealed the bacterial colonization of the film surfaces while CM permitted the comparative assessment of the roughness of the film surfaces upon exposure to the two bacterial strains. By dividing the total surface area of the film (A′) by the total area of the scan (A) it was possible to monitor biodegradation by observing differences in the topography of the film surface. Prior to inoculation, P3HB/3HHx films had an A′/A ratio of 1.06. A 24-h incubation with P. lemoignei increased the A′/A ratio to 1.47 while a 48- and 120-h incubation with Comamonas resulted in A′/A ratios of 1.16 and 1.33, respectively. These increases in the A′/A ratios over time demonstrated an increase in the irregularity of the film surface, indicative of PHA polymer breakdown. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号