首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liou RM  Chen SH  Hung MY  Hsu CS  Lai JY 《Chemosphere》2005,59(1):117-125
FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.  相似文献   

2.
以正交设计方法为基础,以COD去除率为指标,确定了聚硅铝铁硼(PSAFB)最优制备条件,研究了Fenton-PSAFB混凝法处理城市生活垃圾压滤液的最优反应条件和处理效果。结果表明:以200 mL生活垃圾压滤液为处理对象,复合絮凝剂PSAFB的最优制备工艺条件为:Al/Si为1/2,Fe/Si为1/2,B/Si为1/6;其最优反应条件为:pH值为5.0,投加量为200 mg/L(以SiO2计);Fenton法最优反应条件为:pH值为3.0,30%H2O2为20 mL,1 mol/L FeSO4为30 mL;采用最优反应条件的Fenton-PSAFB处理垃圾压滤液,浊度去除率达到95.2%,COD去除率达到84.2%,BOD5去除率达到81.5%。  相似文献   

3.
针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。  相似文献   

4.
Industrial dyeing wastewater was oxidized in supercritical water in a transpiring-wall reactor, using hydrogen peroxide as an oxidant. Experiments were performed at 595 to 704 K and 18 to 30 MPa, with an oxidant dosage ratio ranging from 0.6 to 2.0. A chemical oxygen demand (COD) removal of more than 98.4% was achieved at 704 K and 28 MPa, with a retention time less than 35 seconds, which increased with the temperature, pressure, and oxidant. A modified first-order rate expression was regressed from experimental data, taking into account the influence of induction time. The resulting pre-exponential factor, A, and activation energy, Ea, were 1.07 seconds(-1) and 12.12 kJ x mol(-1), respectively, while the reaction order for feed wastewater (based on COD) and oxidant were assumed to be 1 and 0, respectively. Gas chromatography/mass spectrometry analysis for effluents indicated that carbon dioxide, carbon monoxide, and nitrogen were the main reaction products, and phenol; benzenecarboxylic acid; 1, 2-benzenedicarboxylic acid; and isoquinoline were detected as intermediates.  相似文献   

5.
The degradation of phenol in acidic solution at pH 3 has been investigated under various photo- and electrochemical conditions. A laboratory-scale reactor on which were mounted net electrodes (RuO2/IrO2-coated Ti anodes (DSA) and stainless steel cathodes) and 254 nm UV lamps was established to effectively reduce ferric reagents. The experimental results of the photoelectron-chemical reaction suggested that the current efficiency of reducing ferric ion was improved by increasing the number of electrodes used, and the UV lamps were important to inducing the reduction of ferric carboxylates, which were the major intermediates that were formed upon a particular degree of phenol oxidation. Accordingly, the addition of an initial concentration of 400 ppm ferrous salt and 10,200 ppm hydrogen peroxide (in a continuous mode) resulted in the removal of over 92 % of TOC (initial phenol?=?2,000 ppm, TOC?=?1,532 ppm) by 4 h of the photoelectro-Fenton and the sequential 2 h of the photo-Fenton processes. HPLC was utilized to monitor the formation of aromatic and carboxylate byproducts, and revealed that the aid of photo irradiation eliminated most of the oxalate residue from the final solution, which would have contributed to the 25 % of the TOC that was inactive in the electrolytic system.  相似文献   

6.
Lemaire J  Croze V  Maier J  Simonnot MO 《Chemosphere》2011,84(9):1181-1187
An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fenton’s reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe2+]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg−1 with permanganate and 1.8 g kg−1 with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.  相似文献   

7.
《Chemosphere》2009,74(11):1708-1715
In this paper, the oxidation of tert-butyl formate (TBF) in aqueous solution by an ozone/UV process was described. The oxidation process was investigated experimentally in a semibatch reactor. The results of the study indicated that the ozone/UV process was very effective in oxidizing TBF. tert-Butyl alcohol (TBA), hydroxy-iso-butyraldehyde (HiBA), acetone, formaldehyde, and formic acid were identified as major primary intermediates during the oxidation of TBF. About 90% organic carbon balance was obtained indicating that most reaction intermediates have been identified and quantified. Some of the primary intermediates were also oxidized in the ozone/UV system. Accordingly, HiBA, acetone, formaldehyde, and formic acid were the primary intermediates of TBA oxidation. The oxidation of acetone in the ozone/UV system generated formaldehyde, pyruvaldehyde, acetic acid, formic acid as primary intermediates. It was also observed that the reaction intermediates formed during the oxidation of TBF react well in the ozone/UV system and complete mineralization could be achieved by the process.  相似文献   

8.
The objective of this work was to evaluate the effect of the initial sulfide concentration on the kinetics and metabolism of phenol and sulfide in batch bioassays using nitrate as electron acceptor. Complete oxidation of sulfide (20 mg L(-1) of S(2-)) and phenol (19.6 mg L(-1)) was linked to nitrate reduction when nitrate was supplemented at stoichiometric concentrations. At 32 mg L(-1) of sulfide, oxidation of sulfide and phenol by the organo-lithoautotrophic microbial culture was sequential; first sulfide was rapidly oxidized to elemental sulfur and afterwards to sulfate; phenol oxidation started once sulfate production reached a maximum. When the initial sulfide concentration was increased from 20 to 26 and finally to 32 mg L(-1), sulfide oxidation was inhibited. In contrast phenol consumption by the denitrifying culture was not affected. These results indicated that sulfide affected strongly the sulfide oxidation rate and nitrate reduction.  相似文献   

9.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

10.
The atmospheric oxidation of several terpenes appears to be a potentially relevant source of acetone in the atmosphere. Proton-transfer-reaction mass spectrometry was used as an on-line analytical method in a chamber study to measure acetone and other gas phase products from the oxidation of α- and β-pinene initiated by OH radicals in air and in the presence of NOx.Acetone may be formed promptly, following attack by the OH radical on the terpene, via a series of highly unstable radical intermediates. It can also be formed by slower processes, via degradation of stable non-radical intermediates such as pinonaldehyde and nopinone.Primary acetone and pinonaldehyde molar yields of 11±2% (one σ) and 34±9% (one σ), respectively, were found from the reaction between α-pinene and the OH radical. After all α-pinene had been consumed, an additional formation of acetone due to the degradation of stable non-radical intermediates was observed. The total amount of acetone formed was 15±2% (one σ) of the reacted α-pinene. An upper limit of 12±3% (one σ) for the acetone molar yield from the oxidation of pinonaldehyde was established.From the reaction between β-pinene and the OH radicals, primary acetone and nopinone molar yields of 13±2% (one σ) and 25±3% (one σ), respectively, were observed. Additional amounts of acetone were formed by the further degradation of the primary product, such as the most abundant product nopinone. The total amount of acetone formed was 16±2% (one σ) of the reacted β-pinene. An upper limit of 12±2% (one σ) for the acetone molar yield from the oxidation of nopinone was established.The observed product yields from α- and β-pinene are in good agreement with other studies using mass-spectrometric and gas chromatographic analytical techniques, but differ significantly from previous studies using spectroscopic methods. Possible reasons for the discrepancies are discussed.  相似文献   

11.
The aim of this study was to assess the degradation and mineralization of hydroquinone (HQ) by the Fenton’s process in a bubble column reactor (BCR). The effect of the main operating variables, namely, air flow rate, effluent volume, hydrogen peroxide (H2O2) concentration, catalyst (Fe2+) dose, initial pH, and temperature, were assessed. For all air flow rates tested, no concentration gradients along the column were noticed, evidencing that a good mixing was reached in the BCR. For the best conditions tested ([H2O2] = 500 mg/L, [Fe2+] = 45 mg/L, T = 24 °C, Q air = 2.5 mL/min, pH = 3.0, and V = 5 L), complete HQ degradation was reached, with ~ 39% of total organic carbon (TOC) removal, and an efficiency of the oxidant use—η H2O2—of 0.39 (ratio between TOC removed per H2O2 consumed normalized by the theoretical stoichiometric value); moreover, a non-toxic effluent was generated. Under these conditions, the intermediates and final oxidation compounds identified and quantified were a few carboxylic acids, namely, maleic, pyruvic, and oxalic. As a strategy to improve the TOC removal, a gradual dosage of the optimal H2O2 concentration was implemented, being obtained ~ 55% of mineralization (with complete HQ degradation). Finally, the matrix effect was evaluated, for which a real wastewater was spiked with 100 mg/L of HQ; no reduction in terms of HQ degradation and mineralization was observed compared to the solution in distilled water.  相似文献   

12.
采用臭氧高级氧化处理高浓度苯乙烯有机废气,研究了进气苯乙烯浓度、臭氧浓度、停留时间、O3/C8H8摩尔比对苯乙烯去除效率的影响。研究结果表明,臭氧氧化能有效净化苯乙烯有机废气,苯乙烯去除效率可达66.6%。适宜运行条件为:停留时间为3.6 s,O3/C8H8摩尔比为0.46。采用GC-MS分析臭氧氧化苯乙烯出口气样,研究结果表明,苯甲醛(C6H5CHO)和苯甲酸(C6H5COOH)为臭氧氧化苯乙烯的中间产物。臭氧高级氧化苯乙烯机制为苯乙烯气体被臭氧氧化为苯甲醛和苯甲酸,然后继续臭氧氧化为最终产物二氧化碳和水。  相似文献   

13.
采用蒸发壁式超临界水氧化反应器对染料分散红C.I.60和活性艳红M-2B配制的模拟废水进行降解实验.实验结果表明,2种染料的COD和TN去除率随着反应温度、氧化剂过量比(r)的升高而上升.COD去除率活性红要高于分散红,而TN去除率则相反.根据GC-MS分析和陶瓷膜SEM图像,分析测得2种染料主要反应中间产物均含有苯酚和苯甲酸,2种染料的反应对陶瓷膜均有轻微的腐蚀.  相似文献   

14.
以三氯生为目标污染物,研究了黄铁矿催化H2O2非均相类Fenton体系对污染物的去除效果,并利用SEM、EDS等手段对天然黄铁矿进行了表征。考察了催化剂、H2O2投加量、溶液初始pH、反应时间等重要因素对催化氧化反应的影响。在H2O2投加量5 mg/L,黄铁矿用量0.1 g/L,溶液初始pH为8,反应10 min后,三氯生的去除率达90%以上。相对于传统Fenton反应,pH对本非均相催化反应的影响较小,在2~10的pH范围内,仍有较高的催化活性。利用GC-MS分析显示,三氯生降解过程能够产生包括2,4-二氯苯酚在内的多种中间产物。  相似文献   

15.
采用水热晶化法合成了不同含铜量的Cu—SBA-15介孔分子筛,并且用XRD、N2吸附、TEM以及uV—vis对所合成的样品进行表征。以Cu—SBA-15为催化剂,H2O2为氧化剂,催化湿式过氧化水溶液中的罗丹明B,主要考察H2O2浓度、催化剂用量、处理温度、初始pH等因素对罗丹明B氧化效果的影响。结果表明,在同样的处理条件下罗丹明的脱色率明显高于TOC去除率,处理温度、初始pH对罗丹明B的脱色与氧化有重要影响。在罗丹明B初始浓度100mg/L,H2O2初始浓度1.8g/L,催化剂量0.3g/L,温度60℃,pH为7.0,处理时间100min时,罗丹明B的脱色率为98.6%,TOC去除率为62.8%。  相似文献   

16.
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R 2?=?0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R 2), root mean square error and design of index (d).  相似文献   

17.
Fe-Co3O4 thin film with different amounts of Fe have been used for the electro-oxidation of phenol in alkaline medium at room temperature. The electrodes were prepared by coating stainless steel supports with successive layers of the oxides, obtained by thermal decomposition at 673 K. The electrolysis was carried out at constant potential and the phenol disappearance, during the electrolysis, was monitored by UV-Vis absorbance measurements between 250 and 500 nm. After 3 h of electrolysis, the intermediates were identified by comparing the HPLC data and UV-Vis spectra to those from pure standards. The results indicate that the same oxidation products are formed on the different prepared electrodes, namely the decomposition products of phenol such as benzoquinone, hydroquinone and cathecol in basic medium. Simulated results show clearly the decrease of the amount of phenolic species with the electrolysis time. An enhancement of the phenol removal is observed with the presence of iron in the oxide. Under the operating conditions, around 30% of the initial phenol has been removed at ca. 3 h and the complete degradation is obtained after 54 h of electrolysis, when Fe-Co3O4 thin film with 10% of Fe is used as anode.  相似文献   

18.
CuO / 过硫酸氢钾体系催化氧化苯酚   总被引:1,自引:0,他引:1  
本论文通过直接沉淀法制备了CuO催化剂,结合过硫酸氢钾,在常温常压下催化氧化处理苯酚模拟废水。采用电子显微镜(SEM)、X射线粉末衍射(XRD)对催化剂进行了表征,并研究了反应过程中各影响因素对降解效率的影响。实验结果表明,在催化剂用量为0.2 g/L,氧化剂浓度为0.25 g/L,pH值为7,反应时间为60 min的条件下,浓度为50 mg/L的苯酚降解率可达100%,TOC去除率达84%。进一步实验表明,催化剂具有良好的重复使用能力。最后,通过自由基捕捉实验,考察了体系中的自由基种类,并根据实验结果,讨论了CuO/过硫酸氢钾体系的催化降解机理。  相似文献   

19.
Xu Z  Deng S  Yang Y  Zhang T  Cao Q  Huang J  Yu G 《Chemosphere》2012,87(9):1032-1038
Pentachlorobenzene (PeCB) in simulated flue gas was destructed by a commercial V2O5-WO3/TiO2 catalyst in this study. The effects of reaction temperature, oxygen concentration, space velocity and some co-existing pollutants on PeCB conversion were investigated. Furthermore, a possible mechanism for the oxidation of PeCB over the vanadium oxide on the catalysts was proposed. Results show that the increase of gas hourly space velocity (GHSV) and the decrease of operating temperature both resulted in the decrease of PeCB removal over the catalyst, while the effect of the oxygen content in the range of 5-20% (v/v) on PeCB conversion was negligible. PeCB decomposition could be obviously affected by the denitration reactions under the conditions because of the positive effect of NO but negative effect of NH3. The introduction of SO2 caused the catalyst poisoning, probably due to the sulfur-containing species formed and deposited on the catalyst surface. The PeCB molecules were first adsorbed on the catalyst surface, and then oxidized into the non-aromatic acyclic intermediates, low chlorinated aromatics and maleic anhydride.  相似文献   

20.
The effect of irradiation with visible light-emitting diode (LED) light on the efficiency of Fenton oxidation is investigated using phenol as the target compound (100 mg/L). The H2O2 dose and temperature are tested as operating variables with the aim of minimizing consumption of the reagents. At 50 °C, 10 mg/L Fe2+, and 60 % of the stoichiometric H2O2 amount, phenol was completely oxidized into CO2, H2O, and short chain organic acids, with oxalic acid completely degraded. Up to 95 % mineralization was achieved. This high efficiency can be attributed to the effect of LED radiation on the quinones/Fe2+/Fe3+/H2O2 cycle, which significantly increases the reaction rate, as well as on the photodecomposition of the iron complexes formed along the oxidation process, which also enhanced mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号