首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

2.
Abstract

Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a “whole” year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 ~g/m3 and low in summer days at 456 ~g/m3; however, the spatial PM10 average exhibited little variation at a level of approximately 325 ~g/m3, and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

3.
ABSTRACT

PM10, PM25, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the city's particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 H g/m3. The 24-hr standard of 150 μ g/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 μ g/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.  相似文献   

4.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

5.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

6.
Aerosol samples (TSP and PM10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m?3 and 12 ng m?3 for TSP, 21 ng m?3 and 9 ng m?3 for PM10, respectively. Concentrations of Br and I in TSP and PM10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM10 extracted by a dilute acid solution (HNO3 + H2SO4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.  相似文献   

7.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

8.
Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2?±?33.6 μg m?3) were significantly higher than those at the rural sites (23.7?±?20.4 and 22.7?±?26.9 μg m?3). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.  相似文献   

9.
Abstract

Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004–2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 µm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 µg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 µg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 µg/m3 at the central and southern sites, respectively, to 31 µg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50–60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

10.
Thoracic (PM10), fine thoracic (PM2.5) and sub-micrometer (PM1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11–29, 8.1–24, and 6.6–18 μg m?3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m?3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO3? levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl? were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m?3 and were strongly correlated with outdoor traffic conditions.  相似文献   

11.
Quantitative information on the contribution of dust storms to atmospheric PM10 (particulate matter with an aerodynamic diameter ≤10 µm) levels is still lacking, especially in urban environments with close proximity to dust sources. The main objective of this study was to quantify the contribution of dust storms to PM10 concentrations in a desert urban center, the city of Beer-Sheva, Negev, Israel, during the period of 2001–2012. Toward this end, a background value based on the “dust-free” season was used as a threshold value to identify potentially “dust days.” Subsequently, the net contribution of dust storms to PM10 was assessed. During the study period, daily PM10 concentrations ranged from 6 to over 2000 µg/m3. In each year, over 10% of the daily concentrations exceeded the calculated threshold (BVt) of 71 µg/m3. An average daily net contribution of dust to PM10 of 122 µg/m3 was calculated for the entire study period based on this background value. Furthermore, a dust storm intensity parameter (Ai) was used to analyze several storms with very high PM10 contributions (hourly averages of 1000–5197 μg/m3). This analysis revealed that the strongest storms occurred mainly in the last 3 yr of the study. Finally, these findings indicate that this arid urban environment experiences high PM10 levels whose origin lies in both local and regional dust events.

Implications:The findings indicate that over time, the urban arid environment experiences high PM10 levels whose origin lies in local and regional dust events. It was noticed that the strongest storms have occurred mainly in the last 3 yr. It is believed that environmental changes such as global warming and desertification may lead to an increased air pollution and risk exposure to human health.  相似文献   


12.
Size-segregated aerosol samples (PM2.5 and PM10) were collected during Jan–Dec-2007 from a high-altitude site located in a semi-arid region (Mt. Abu, 24.6 °N, 72.7 °E, 1680 m asl) in order to asses the temporal variability in the abundance of atmospheric mineral dust and its elemental composition over western India. The mass concentrations of fine (PM2.5) and coarse (PM10–2.5) mode aerosols varied from 1.6 to 46.1 and 2.3 to 102 μg m?3 respectively over the annual seasonal cycle; with dominant and uniform contribution of mineral dust (60–80%) in the coarse mode relative to large temporal variability (11–75%) observed in the fine mode. The coarse mass fraction shows a characteristic increase with the wind speed during summer months (Mar to Jun); whereas fine aerosol mass and its elemental composition exhibit conspicuous temporal pattern associated with north-easterlies during wintertime (Oct–Feb). The Fe/Al weight ratio in PM2.5 ranges from 0.5 to 1.0 during winter months. The relative enrichment of Fe in fine mode, compared to the crustal ratio of 0.44, is attributed to the down-wind advective transport of combustion products derived from large-scale biomass burning, industrial and automobile emission sources located in the Indo-Gangetic Plain (northern India). In contrast, Ca/Al and Mg/Al weight ratios show relative enrichment of Ca and Mg in the coarse mode; indicating their dominant contribution from carbonate minerals. This has implication to efficient neutralization of atmospheric acidic species (SO42? and NO3?) by mineral dust over western India.  相似文献   

13.
ABSTRACT

Particulate matter ≤10 μm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K f) were found to change seasonally, ranging from 1.3 × 10?5 to 5.1 × 10?5 for sand flux measured at 15 cm above the surface (q 15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F?=?K f ×?q 15). The maximum hourly PM10 emission rate from the study area was 76 g/m2·hr (10-m wind speed?=?23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2·day, and annual emissions at 1095 g/m2·yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 μg/m3 (slope?=?0.89, R 2?=?0.77).

IMPLICATIONS Under a U.S. Environmental Protection Agency (EPA)-approved plan, the method described in this paper has been used since 2000 at Owens Lake, CA, to identify and successfully mitigate dust from over 100 km2 of the dry lakebed. It continues to be used to monitor dust control compliance at Owens Lake. Scaled-down versions of the Owens Lake network can be implemented in other areas in a manner similar to the Mono Lake study. Once K-factors are established, low-cost CSC samplers (about $35 U.S.) may be used for periodic monitoring (e.g., daily, weekly, or monthly) to estimate PM10 emissions or to evaluate dust control compliance.  相似文献   

14.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

15.
The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma–atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air.
ImplicationsWith installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 μg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.  相似文献   

16.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

17.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   

18.
Religious festivals (festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July–August 2005 when 59 feasts were celebrated and September–October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM10 and metal concentration levels measured as weekly means were significantly higher during July–August compared to September–October and there exist strong correlations between PM10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July–August were at comparable or higher concentration than recently reported values in PM10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.  相似文献   

19.
A PM10 monitoring network was established throughout the South Coast Air Basin (SOCAB) in the greater Los Angeles region during the calendar year 1986. Annual average PM10 mass concentrations within the Los Angeles metropolitan area ranged from 47.0 µg m-3 along the coast to 87.4 µg m-3 at Rubldoux, the furthest inland monitoring station. Measurements made at San Nicolas Island suggest that regional background aerosol contributes between 28 to 44 percent of the PM10 aerosol at monitoring sites In the SOCAB over the long term average. Five major aerosol components (carbonaceous material, NO- 3, SO= 4, NH+ 4, and soil-related material) account for greater than 80 percent of the annual average PM10 mass at all on-land monitoring stations. Peak 24-h average mass concentrations of nearly 300 µg m-3 were observed at inland locations, with lower peak values (?130–150 µg m-3) measured along the coast. Peak-day aerosol composition was characterized by increased NO- 3 Ion and associated ammonium ion levels, as compared to the annual average. There appears to be only a weak dependence of PM10 mass concentration on season of the year. This lack of a pronounced seasonal dependence results from the complex and contradictory seasonal variations in the major chemical components (carbonaceous material, nitrate, sulfate, ammonium ion and crustal material). At most sites within the Los Angeles metropolitan area, PM10 mass concentrations exceeded both the annual and 24-h average federal and state of California PM10 regulatory standards.  相似文献   

20.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号