首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two aquatic crustaceans, Daphnia magna and Thamnocephalus platyurus. For that, silver NPs were synthesized where Ag is covalently attached to poly(vinylpyrrolidone) (PVP). In parallel, the toxicity of collargol (protein-coated nanosilver) and AgNO3 was analyzed. Both types of silver NPs were highly toxic to both crustaceans: the EC50 values in artificial freshwater were 15–17 ppb for D. magna and 20–27 ppb for T. platyurus. The natural water (five different waters with dissolved organic carbon from 5 to 35 mg C/L were studied) mitigated the toxic effect of studied silver compounds up to 8-fold compared with artificial freshwater. The toxicity of silver NPs in all test media was up to 10-fold lower than that of soluble silver salt, AgNO3. The pattern of the toxic response of both crustacean species to the silver compounds was almost similar in artificial freshwater and in natural waters. The chronic 21-day toxicity of silver NPs to D. magna in natural water was at the part-per-billion level, and adult mortality was more sensitive toxicity test endpoint than the reproduction (the number of offspring per adult).  相似文献   

2.
The main disadvantage of using iron mineral in Fenton-like reactions is that the decomposition rate of organic contaminants is slower than in classic Fenton reaction using ferrous ions at acidic pH. In order to overcome these drawbacks of the Fenton process, chelating agents have been used in the investigation of Fenton heterogeneous reaction with some Fe-bearing minerals. In this work, the effect of new iron complexing agent, ethylenediamine-N,N'-disuccinic acid (EDDS), on heterogeneous Fenton and photo-Fenton system using goethite as an iron source was tested at circumneutral pH. Batch experiments including adsorption of EDDS and bisphenol A (BPA) on goethite, H2O2 decomposition, dissolved iron measurement, and BPA degradation were conducted. The effects of pH, H2O2 concentration, EDDS concentration, and goethite dose were studied, and the production of hydroxyl radical (?OH) was detected. The addition of EDDS inhibited the heterogeneous Fenton degradation of BPA but also the formation of ?OH. The presence of EDDS decreases the reactivity of goethite toward H2O2 because EDDS adsorbs strongly onto the goethite surface and alters catalytic sites. However, the addition of EDDS can improve the heterogeneous photo-Fenton degradation of BPA through the propagation into homogeneous reaction and formation of photochemically efficient Fe-EDDS complex. The overall effect of EDDS is dependent on the H2O2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ?? to generate Fe(II) species from Fe(III) reduction. Low concentrations of H2O2 (0.1 mM) and EDDS (0.1 mM) were required as optimal conditions for complete BPA removal. These findings regarding the capability of EDDS/goethite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.  相似文献   

3.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

4.
The effect of varying inorganic (chloride, nitrate, sulfate, and phosphate) and organic (represented by humic acid) solutes on the removal of aqueous micropollutant bisphenol A (BPA; 8.8 μM; 2 mg/L) with the oxidizing agents hydrogen peroxide (HP; 0.25 mM) and persulfate (PS; 0.25 mM) activated using zero-valent aluminum (ZVA) nanoparticles (1 g/L) was investigated at a pH of 3. In the absence of the solutes, the PS/ZVA treatment system was superior to the HP/ZVA system in terms of BPA removal rates and kinetics. Further, the HP/ZVA process was not affected by nitrate (50 mg/L) addition, whereas chloride (250 mg/L) exhibited no effect on the PS/ZVA process. The negative effect of inorganic anions on BPA removal generally speaking increased with increasing charge in the following order: NO3? (no inhibition)?<?Cl? (250 mg/L)?=?SO42??<?PO43? for HP/ZVA and Cl? (250 mg/L; no inhibition)?<?NO3??<?SO42??<?PO43? for PS/ZVA. Upon addition of 20 mg/L humic acid representing natural organic matter, BPA removals decreased from 72 and 100% in the absence of solutes to 24 and 57% for HP/ZVA and PS/ZVA treatments, respectively. The solute mixture containing all inorganic and organic solutes together partly suppressed the inhibitory effects of phosphate and humic acid on BPA removals decreasing to 46 and 43% after HP/ZVA and PS/ZVA treatments, respectively. Dissolved organic carbon removals were obtained in the range of 30 and 47% (the HP/ZVA process), as well as 47 and 57% (the PS/ZVA process) for the experiments in the presence of 20 mg/L humic acid and solute mixture, respectively. The relative Vibrio fischeri photoluminescence inhibition decreased particularly for the PS/ZVA treatment system, which exhibited a higher treatment performance than the HP/ZVA treatment system.  相似文献   

5.
Guo RX  Chen JQ 《Chemosphere》2012,87(11):1254-1259
Two common freshwater phytoplankton species Microcystis aeruginosa and Scenedesmus obliquus were employed as test organisms to investigate the toxic effects of chlortetracycline widely used in human medicine and veterinary as antibiotic. Toxicity assays were performed into two parts: antibiotic toxicity test and antibiotic degraded products toxicity test. In general, chlortetracycline had significantly toxic effect on population growth and chlorophyll-a accumulation of two phytoplankton. Although M. aeruginosa had ability to grow after exposed to chlortetracycline at 0.5 mg L−1, its photosynthesis function was also disrupted. Compared with the data in two phytoplankton species, the chlorophyceae was more sensitive than the cyanophyceae. The adverse effect on S. obliquus was stronger than that on M. aeruginosa with increasing concentrations. In addition, for M. aeruginosa, regardless of the UV light degradation time, the treated chlortetracycline also had adverse effect on population growth and chlorophyll-a accumulated. The degraded chlortetracycline under any treatment time was more toxic for S. obliquus than chlortetracycline itself excluding under 24 h. However, the correlation between the toxicity and degradation time was not clear and toxicity enhanced in fact did not follow the increase or decrease in degradation time. Our study showed that the antibiotic chlortetracycline and its degraded products had adverse effect on freshwater phytoplankton, the former has not been reported before and the latter has been overlooked in other research in the past.  相似文献   

6.
A new method for the degradation of bisphenol A (BPA) in aqueous solution was developed. The oxidative degradation characteristics of BPA in a heterogeneous Fenton reaction catalyzed by Fe3O4/graphite oxide (GO) were studied. Transmission electron microscopic images showed that the Fe3O4 nanoparticles were evenly distributed and were ~6 nm in diameter. Experimental results suggested that BPA conversion was affected by several factors, such as the loading amount of Fe3O4/GO, pH, and initial H2O2 concentration. In the system with 1.0 g L?1 of Fe3O4/GO and 20 mmol L?1 of H2O2, almost 90 % of BPA (20 mg L?1) was degraded within 6 h at pH 6.0. Based on the degradation products identified by GC–MS, the degradation pathways of BPA were proposed. In addition, the reused catalyst Fe3O4/GO still retained its catalytic activity after three cycles, indicating that Fe3O4/GO had good stability and reusability. These results demonstrated that the heterogeneous Fenton reaction catalyzed by Fe3O4/GO is a promising advanced oxidation technology for the treatment of wastewater containing BPA.  相似文献   

7.
This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF3SO2)2N anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes.  相似文献   

8.
Ecotoxicity of nanoparticles of CuO and ZnO in natural water   总被引:1,自引:0,他引:1  
The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C50 values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C50 values of bulk CuO. In all test media, the L(E)C50 values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria.  相似文献   

9.
A mixture of urban and hospital effluents (50 % v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms’ fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents.  相似文献   

10.
Sun K  Jin J  Gao B  Zhang Z  Wang Z  Pan Z  Xu D  Zhao Y 《Chemosphere》2012,88(5):577-583
The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (log Kd) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (Kd or KOC) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logKd for size fractions of SL and ST did not follow the order: clay > silt > sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes.  相似文献   

11.
The study of the effect of the sorption of linear alkylbenzene sulfonates (LAS) on the bioavailability to marine benthic organisms is essential to refine the environmental risk assessment of these compounds. According to the equilibrium partitioning theory (EqP), the effect concentration in water-only exposure will be similar to the effect concentration in the sediment pore water. In this work, sorption and desorption experiments with two marine sediments were carried out using the compound C12-2-LAS. The effect of the sediment sorption on the toxicity of benthic organisms was studied in water-only and in sediment bioassays with the marine mud shrimp Corophium volutator. In addition, three common spiking methods were tested for its application in the toxicity tests, as well as the stability of the surfactant during the water-only and sediment-water test duration. LC50 values obtained from water-only exposure showed a good correspondence with the pore water concentrations calculated from the sorption and desorption isotherms in the spiked sediments.  相似文献   

12.

A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo2O4/TiO2/graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo2O4 and TiO2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo2O4/TiO2/GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo2O4/TiO2/GO dosage, and H2O2 concentration on BPA degradation. In a system with 0.5 g L−1 of FeCo2O4/TiO2/GO and 10 mmol L−1 of H2O2, approximately 90 % of BPA (20 mg L−1) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo2O4/TiO2/GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo2O4/TiO2/GO is a promising advanced oxidation technology for treating wastewater that contains BPA.

  相似文献   

13.
Zhou J  Zhu XS  Cai ZH 《Chemosphere》2011,82(3):443-450
The effects of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development were investigated by exposing the fertilized eggs to four different concentrations of BPA (0.05, 0.2, 2 and 10 μg mL−1). Toxicity endpoints including the embryo development parameters, the physiological features and the expression profile of several reference genes (prohormone convertase 1, PC1; cyclin B, CB; and cyclin-dependent kinase 1, CDK1) were assessed. The results showed that BPA could markedly reduce embryo hatchability, increase developmental malformation, and suppress the metamorphosis behavior of larvae. The possible toxicological mechanisms hidden behind of these effects (i.e. disturbing the embryogenesis) might result from three aspects: (1) BPA disturbance the cellular ionic homeostasis and osmoregulation of abalone embryos by changing the Na+-K+-ATPase and Ca2+-Mg2+-ATPase levels; (2) BPA induced oxidative damage of embryos by significantly alterating the peroxidase (POD) activities and the malondialdehyde (MDA) production; and (3) the RT-PCR analysis further demonstrated that BPA perturbed the cellular endocrine regulation and cell cycle progression by down-regulating the PC1 gene, as well as over-expressing the CB and CDK1 genes. This is the first comprehensive study on the developmental toxicity of BPA to the marine abalone at morphological, physiological and molecular levels. The results in this study also indicated that the embryo tests can contribute to the ecological risk assessment of the endocrine disruptors in marine environment.  相似文献   

14.

Goal, Scope and Background

The potential negative impact of urban storm water on aquatic freshwater ecosystems has been demonstrated in various studies with different types of biological methods. There are a number of factors that influence the amount and bioavailability of contaminants in storm water even if it is derived from an area with a fairly homogenous land use such as a roadscape where a variation in toxicity during rain events might be expected. There are only a few previous investigations on the toxicity of highway runoff and they have not explored these issues extensively. The main objective of this study is therefore to characterize the potential toxicity of highway runoff during several rain events before it enters a detention pond in VästerOas, Sweden, using laboratory bioassays with test organisms representing various functional groups in an aquatic ecosystem. The results are to be used for developing a monitoring program, including biological methods.

Materials and Methods

The storm water was sampled before the entrance to a detention pond, which receives run-off from a highway with approximately 20,000 vehicles a day. The drainage area, including the roadscape and vegetated areas, is 4.3 ha in size. Samples for toxicity tests were taken with an automatic sampler or manually during storm events. In total, the potential toxicity of 65 samples representing 15 different storm events was determined. The toxicity was assessed with 4 different test organisms; Vibrio fischeri using the Microtox® comparison test, Daphnia magna using Daphtoxkit-F?agna, Thamnocephalus platyurus using the ThamnotoxkitF? and Lemna minor, duckweed using SS 028313.

Results and Discussion

Of the 65 samples, 58 samples were tested with DaphniatoxkitF?agna, 57 samples with the Microtox® comparison test, 48 samples with ThamnotoxkitF? and 20 samples with Lemna minor, duckweed. None of the storm water samples were toxic.No toxicity was detected with the Lemna minor test, but in 5 of the 23 samples tested in comparison to the control a growth stimulation of 22–46% was observed. This is in accordance with the chemical analysis of the storm water, which indicated rather large concentrations of tot-N and tot-P. In addition to the growth stimulation, morphological changes were observed in all the 5 samples from the winter event that was sampled. The lack of toxicity observed in our study might be due to a lower traffic intensity (20,000 vehicles/day) at the site and the trapping of pollutants in the vegetated areas of the roadscape, resulting in much smaller loads of pollutants in the storm water than in some previous studies.

Conclusions

Ecotoxicological evaluations of storm water including run off from rain events from urban roadscape studies clearly reveal that toxicity may or may not be detected depending upon site, storm condition and the test organism chosen. However, storm water might not be as polluted as previously reported nor may the first flush be such a widespread phenomenon as we originally expected. In this study, there was also a good correlation between pollutant load measured and the lack of toxicity. The test organisms chosen in this study are commonly used in effluent control programs in Sweden and other countries, which makes it possible to compare the results with those from other effluents. In this study, only acute toxicity tests were used and further studies using chronic toxicity tests, assays for genotoxic compounds or in situ bioassays might reveal biological effects at this site. Furthermore, most of the samples were taken in spring, summer or fall and it is possible that winter conditions might alter the constituents in the storm water and, thus, the toxicity of the samples.

Recommendations and Perspectives

Considering the complex nature of run off from urban roadscapes, it will be virtually impossible to evaluate properly the potential hazard of particular storm water and the efficiency of a particular treatment strategy from only physical and chemical characterizations of the effluent. Therefore, despite the lack of toxicity detected in this study, it is recommended that toxicity tests or other biological methods should be included in evaluations of the effects of runoff from roadscapes.
  相似文献   

15.
Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4 ), which was generated by the activation of persulfate (S2O8 2?) with ferrous ion (Fe2+). S2O8 2? was activated by Fe2+ to produce SO4 , and iron powder (Fe0) was used as a slow-releasing source of dissolved Fe2+. The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8 2? or Fe2+ concentrations and then decreased with excess Fe2+ concentration. The adding mode of Fe2+ had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97 % with sequential addition of Fe2+, while complete degradation was observed with continuous diffusion of Fe2+, and the latter achieved higher TOC removal rate. When Fe0 was employed as a slow-releasing source of dissolved Fe2+, 100 % of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85 %) was obtained within 2 h. In the Fe0–S2O8 2? system, Fe0 as the activator of S2O8 2? could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe0–S2O8 2? system has perspective for future works.  相似文献   

16.
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe2+] = 100 ppm, [H2O2] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD5/COD ratio also revealed an increase in the effluent’s biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.  相似文献   

17.
Decamethylcyclopentasiloxane (D5) is a cyclic volatile methyl siloxane (cVMS) commonly found in commercially available products. D5 is expected to enter the terrestrial environment through the deposit of biosolids from sewage treatment plants onto agricultural fields for nutrient enrichment. Little to no information currently exists as to the risks of D5 to the terrestrial environment. In order to evaluate the potential risk to terrestrial organisms, the toxicity of a D5 contaminated biosolid in an agricultural soil was assessed with a battery of standardized soil toxicity tests.D5 was spiked into a surrogate biosolid and then mixed with a sandy loam soil to create test concentrations ranging from 0 to 4074 mg kg−1. Plant (Hordeum vulgare (barley) and Trifolium pratense (red clover)) and soil invertebrates (Eisenia andrei (earthworm) and Folsomia candida (springtail)) toxicity tests were completed to assess for lethal and sub-lethal effects. Plant testing evaluated the effects on seedling emergence, shoot and root length, and shoot and root dry mass. Invertebrate test endpoints included adult lethality, juvenile production, and individual juvenile dry mass (earthworms only). Soil samples were collected over time to confirm test concentrations and evaluate the loss of chemical over the duration of a test. The toxicity of the D5 was species and endpoint dependent, such that no significant adverse effects were observed for T. pratense or E. andrei test endpoints, however, toxicity was observed for H. vulgare plant growth and F. candida survival and reproduction. Chemical losses of up to 50% were observed throughout the tests, most significantly at high concentrations.  相似文献   

18.
It is well established that aquatic wildlife in marine and freshwater of the European Union is exposed to natural and synthetic endocrine disruptor compounds (EDCs) which are able to interfere with the hormonal system causing adverse effects on the intact physiology of organisms. The traditional wastewater treatment processes are inefficient on the removal of EDCs in low concentration. Moreover, not only the efficiency of treatment must be considered but also toxicological aspects. Taking into account all these aspects, the main goal of the study was to investigate the photochemical decomposition of hazardous phenolic compounds under simulated as well as natural sunlight from the toxicity point of view. The studies were focused on photodegradation of 2,4-dichlorophenol as well as mixture of phenol, 2-chlorophenol and 2,4-dichlorophenol. Photosensitized oxidation process was carried out in homogeneous and heterogeneous system. V. fischeri luminescence inhibition was used to determine the changes of toxicity in mixture during simulated and natural irradiation. The photodegradation was carried out in three kinds of water matrix; moreover, the influence of presence of inorganic matter on the treatment process was investigated. The experiments with natural sunlight proved applicability of photosensitive chitosan for visible-light water pollutant degradation. The results of toxicity investigation show that using photosensitive chitosan for visible-light, the toxicity of reaction mixture towards V. fischeri has significantly decreased. The EC50 was found to increase over the irradiation time; this increase was not proportional to the transformation of the parent compounds.  相似文献   

19.
Ozonation as final wastewater (WW) polishing step, following conventional activated sludge treatment is increasingly implemented in sewage treatment for contaminant degradation to prevent surface water pollution. While the oxidative degradation of chemicals has been extensively investigated, the in vivo toxicological characteristics of ozonated whole effluents are rarely a matter of research.In the present study, whole effluents were toxicologically evaluated with an in vivo test battery before and after full-scale ozonation and subsequent sand filtration on site at a treatment plant. One aquatic plant (duckweed, Lemna minor) and five invertebrate species of different systematic groups (Lumbriculus variegatus, Chironomus riparius, Potamopyrgus antipodarum, Daphnia magna) were exposed to the effluents in a flow-through-designed test system with a test duration of 7-28 d.None of the considered toxicity endpoints correlated with the pollutant elimination. A tendency towards an increased toxicity after ozonation was apparent in three of the test systems showing [statistically] significant adverse effects in the L. variegatus toxicity test (decrease in reproduction and biomass). After sand filtration, adverse effects were reduced to a similar level like after conventional treatment. Solely the Daphnia reproduction test revealed beneficial effects after ozonation in combination with sand filtration.Results of the test battery indicate the formation of adverse oxidation products during WW ozonation. L. variegatus appeared to be the most sensitive of the five test species. Sand filtration effectively removes or detoxifies toxic oxidation products, as toxic effects were subsequently reduced to the level after conventional treatment.  相似文献   

20.
To detect effects of pesticides on non-target freshwater organisms the Species at risk (SPEARpesticides) bioindicator based on biological traits was previously developed and successfully validated over different biogeographical regions of Europe using species-level data on stream invertebrates. Since many freshwater biomonitoring programmes have family-level taxonomic resolution we tested the applicability of SPEARpesticides with family-level biomonitoring data to indicate pesticide effects in streams (i.e. insecticide toxicity of pesticides). The study showed that the explanatory power of the family-level SPEAR(fm)pesticides is not significantly lower than the species-level index. The results suggest that the family-level SPEAR(fm)pesticides is a sensitive, cost-effective, and potentially European-wide bioindicator of pesticide contamination in flowing waters. Class boundaries for SPEARpesticides according to EU Water Framework Directive are defined to contribute to the assessment of ecological status of water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号