首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Alfalfa is the major forage crop produced in temperate regions worlwide. Although this crop is currently used mainly for producing high-value livestock feed, its application for bioenergy production is a recent focus of interest. Even though it is not mandatory, alfalfa is normally dried in order to improve the quality of the final product. In this study, Life Cycle Assessment (LCA) was used to quantify the environmental impacts linked to alfalfa production in the major cultivation zone in Spain (Ebro Valley), including field activities, dehydration and transport to farms for livestock feeding. In addition, the identification of the most relevant processes contributing to the environmental impact and the potential improvements actions were also defined as objectives. Inventory data were obtained mainly from interviews with farmers complemented with published literature and comments from experts.LCA results were obtained for global warming, acidification, eutrophication, photochemical oxidant formation, land use, non-renewable cumulative energy demand and human, terrestrial and aquatic ecotoxicities. Within the life cycle of alfalfa, the dehydration process, production of phosphate fertilizer, application of nitrogen fertilizers and pesticides, water consumption and final transport to the consumer (by road and ship) were identified as hot spots. Based on these, some improvement measures were proposed and evaluated: (i) reduction of the moisture content of alfalfa and the use of a higher percentage of biomass for combustion in the dehydration process, (ii) no application of nitrogen fertilizer in maintenance years and (iii) use of more efficient trucks for transport. Their implementation would produce significant reduction of eutrophication, global warming, acidification, non-renewable cumulative energy demand and, to a lesser extent, photochemical oxidation formation and human toxicity impacts.  相似文献   

2.
Slurry management is a central topic in the agronomic and environmental analysis of intensive livestock production systems. The objective of this study is to compare the environmental performance of two scenarios of collective slurry management for the disposal of excess nitrogen from animal manure. The scenarios are the transfer of slurry and its injection to crop land, and the treatment of slurry in a collective biological treatment station. The study is based on a real case in the West of France, where a group of farmers is developing a collective plan for the disposal of almost 7000 m(3) of excess pig slurry. The evaluation is carried out by Life Cycle Assessment, where emissions and resource consumption are quantified and aggregated into four environmental impact categories: eutrophication, acidification, climate change, and non-renewable energy use. Ammonia emitted is the most important contributor to acidification and eutrophication, while methane contributes most to climate change. Both ammonia and methane are mostly emitted during the storage of slurry and, in the case of the treatment scenario, also during composting the solid fraction of the slurry. The two management strategies are similar with respect to climate change, whereas eutrophication and acidification are twice as large for treatment relative to transfer. Electricity needed for the treatment process is the main contributor to non-renewable energy use for the treatment scenario, while the transfer scenario represents a net energy saving, as energy saved by the reduction of mineral fertiliser use more than compensates for the energy needed for transport and injection of slurry. The overall environmental performance of transfer is better than that of treatment, as it involves less acidification, eutrophication and non-renewable energy use. The method employed and the results obtained in this study can provide elements for a transparent discussion of the advantages and disadvantages of contrasting excess slurry management scenarios as well as the identification of the main aspects determining their environmental performance.  相似文献   

3.
Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides and electricity. The expansion of this crop in Brazil in recent decades has generated concerns about its environmental impacts. To assess these impacts, two representative chains supplying soybeans to Europe were identified: Center West (CW) and Southern (SO) Brazil. Each supply chain was analyzed using Life Cycle Assessment methodology. We considered different levels of use of chemical and organic fertilizers, pesticides and machinery, different distances for transportation of inputs and different yield levels. Because transportation contributed strongly to environmental impacts, a detailed study was performed to identify the routes used to transport soybeans to seaports. Additionally, we considered different levels of land occupation and land transformation to represent the impact of deforestation in the CW region. Environmental impacts were calculated for 1000 kg of soybean up to and including the delivery to Europe at the seaport in Rotterdam, at 13% humidity. Overall results showed that the impacts are greater for CW than for SO for all impact categories studied, including acidification (7.7 and 5.3 kg SO2 eq., respectively), climate change (959 and 510 kg CO2 eq.), cumulative energy demand (12,634 and 6,999 MJ) and terrestrial ecotoxicity (4.9 and 3.1 kg 1,4-DCB eq.), except eutrophication and land occupation. The same trend was observed for the crop-production stage. Efforts to reduce chemical fertilizers and diesel consumption can reduce CO2 emissions. Although deforestation for crop production has decreased in recent years, the contribution of deforestation to climate change and cumulative energy demand remains significant. In the CW scenario deforestation contributed 29% to climate change and 20% to cumulative energy demand. Results also showed that although there are different transportation options in Brazil, the current predominance of road transport causes severe environmental impacts. In CW, road transport contributed 19% to climate change and 24% to cumulative energy demand, while in SO it contributed 12% and 15% to these impacts, respectively. Improvements in the logistics of transportation, giving priority to rail and river transports over road transport, can contribute significantly to reducing greenhouse gas emissions and decreasing energy use. Future studies involving Brazilian soybeans should take into account the region of origin as different levels of environmental impact are predicted.  相似文献   

4.
Phosphorus (P) runoff from manure can lead to eutrophication of surface water and algae growth. This study evaluates the impacts of alternative P reduction practices on dairy farm net returns and on potential P runoff. The P control practices include dairy herd nutrient management, crop nutrient management, and runoff and erosion control. Four farms representative of dairies in the Virginia Shenandoah Valley are simulated including dairies with and without supplementary broiler enterprises and with average and below average land area. A mathematical programming model was developed to predict farm production and net returns and the GLEAMS model was used to predict potential P runoff. The farms are evaluated under four scenarios: Scenario 1, no constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; Scenario 2, no constraint on P runoff with access to all crop and dairy herd nutrient control strategies; Scenario 3, constraint on P runoff with access to crop nutrient, runoff and erosion control strategies but no access to dairy herd nutrient control strategies; and Scenario 4, constraint on P runoff with access to all crop and dairy herd nutrient control strategies. Under Scenario 2, the herd nutrient control strategies increase milk output per cow and net returns on both farms and reduce P content of manure and P runoff. Under Scenario 3, limiting P runoff reduces farm returns by 1 and 3% on the average and small farms, respectively. Under Scenario 4, the P runoff constraint is less costly, reducing returns by less than 1% on both farms. Animal nutrient control strategies should be an important part of pollution control policies and programs for livestock intensive watersheds.  相似文献   

5.
Nitrogen turnover on organic and conventional mixed farms   总被引:1,自引:0,他引:1  
Separate focus on crop fertilization or feeding practices inadequately describes nitrogen (N) loss from mixed dairy farms because of (1) interaction between animal and crop production and between the production system and the manager, and (2) uncertainties of herd N production and crop N utilization. Therefore a systems approach was used to study N turnover and N efficiency on 16 conventional and 14 organic private Danish farms with mixed animal (dairy) and crop production. There were significant differences in N surplus at the farm level (242 kg. N/ha. vs. 124 kg. N/ha. on conventional and organic dairy farms respectively) with a correlation between stocking rate and N surplus. N efficiency was calculated as the output of N in animal products divided by the net N import in fodder, manure and fertilizer. N turnover in herd and individual crops calculated on selected farms showed differences in organic and conventional crop N utilization. This is explained via a discussion of the rationality behind the current way of planning the optimum fertilizer application in conventional agriculture. The concept of marginal N efficiency is insufficient for correcting problems of N loss from dairy farms. Substantial reductions in N loss from conventional mixed dairy farms is probably unlikely without lower production intensity. The concept of mean farm unit N efficiency might be a way to describe the relation between production and N loss to facilitate regulation. This concept is linked to differing goals of agricultural development—i.e. intensification and separation vs. extensification and integration. It is discussed how studies in private farms—using organic farms as selected critical cases—can demonstrate possibilities for balancing production and environmental concern.  相似文献   

6.
Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.  相似文献   

7.
An integrated, landscape-scale approach to countryside management argues for whole farm or business targeting, and for inter-farm co-operation to enhance current Agri-environmental Policy (AEP) and to meet Agri-environmental Policy objectives. This paper describes the preliminary results of a study in the Lake District Environmentally Sensitive Area (ESA), using the ArcView GIS. Spatial data describing the characteristics of farms, farm businesses and farmers are analysed. It is suggested that there is scope for spatially adjacent farms to co-operate through multi-farm management agreements, to achieve and advance the stated aims of the Lakes ESA. The discussion focuses on the potential of AEP schemes to be reoriented away from their present focus on individual farms and holdings, towards a broader geographical coverage and an integrated approach to the management of land across ownership boundaries.  相似文献   

8.
Estimates of enteric methane (CH4) emissions from ruminants are typically measured by confining animals in large chambers, using head hoods or masks, or by a ratiometric technique involving sampling respired air of the animal. These techniques are not appropriate to evaluate large-scale farm emissions and the variability between farms that may be partly attributed to different farm management. This study describes the application of an inverse-dispersion technique to calculate farm emissions in a controlled tracer-release experiment. Our study was conducted at a commercial dairy farm in southern Alberta, Canada (total of 321 cattle, including 152 lactating dairy cows). Sulfur hexafluoride (SF6) and CH4 were released from 10 outlet locations (barn and open pens) using mass-flow controllers. A Lagrangian stochastic (LS) dispersion model was then used to infer farm emissions from downwind gas concentrations. Concentrations of SF6 and CH4 were measured by gas chromatography analysis and open path lasers, respectively. Wind statistics were measured with a three-dimensional sonic anemometer. Comparing the inferred emissions with the known release rate showed we recovered 86% of the released CH4 and 100% of the released SF6. The location of the concentration observations downwind of the farm was critically important to the success of this technique.  相似文献   

9.
10.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   

11.
Better insight in the possible range of future N?O emissions can help to construct mitigation and adaptation strategies and to adapt land use planning and management to climate objectives. The Dutch fen meadow landscape is a hotspot of N?O emission due to high nitrogen inputs combined with moist peat soils due to land use change. Socio-economic developments in the area are expected to have major impacts on N?O emission. The goals of this study are to estimate changes in N?O emissions for the period 2006-2040 under three different scenarios for the Dutch fen meadow landscape (rural production, rural fragmentation, and rural multifunctionality) and to quantify the share of different emission sources. Three scenarios were constructed and quantified based on the Story-And-Simulation approach. The rural production and the rural fragmentation scenarios are characterized by globalization and a market-oriented economy; in the rural production scenario dairy farming has a strong competitive position in the study region, while under the rural fragmentation scenario agriculture is declining. Under the rural multifunctionality scenario, the global context is characterized by regionalization and stronger regulation toward environmental issues. The N?O emission decreased between 2006 and 2040 under all scenarios. Under the rural production scenario, the N?O emission decreased by 7%. Due to measures to limit peat mineralization and policies to reduce agricultural emissions, the rural multifunctionality scenario showed the largest decrease in N?O emissions (44%). Under the rural fragmentation scenario, in which the dairy farming sector is diminished, the emission decreased by 33%. Compared to other uncertainties involved in N?O emission estimates, the uncertainty due to possible future land use change is relatively large and assuming a constant emission with time is therefore not appropriate.  相似文献   

12.
Reliable estimation of nutrient concentrations is required to manage animal manure for protecting waters while sustaining crop production. This study was conducted to investigate sample variability and reliable nutrient analysis for several manure types and handling systems. Serial samples were collected from dairy, swine, and broiler poultry operations while manure was being loaded onto hauler tanks or spreaders for field application. Samples were analyzed for total solids (TS), total nitrogen (N), ammoniacal nitrogen (NH4-N), total phosphorus (P), and potassium (K). The least number of samples needed for reliable testing of total N and P, defined as +/- 10% of the experimental means with 99% probability, was obtained for each farm using a computer-intensive random resampling technique. Sample variability within farms, expressed as the coefficient of variation (CV), was mostly 6 to 8% for farms that used agitation of manure storages but several times higher (20-30%) on farms where no agitation was applied during the sampling period. Results from the random resampling procedure indicated that for farms that used agitation, three to five samples were adequate for a representative composite for reliable testing of total N and P; whereas for farms without agitation, at least 40 samples would be required. Data also suggest that using book values for manure nutrient estimations could be problematic because the discrepancies between book standards and measured farm data varied widely from a small amount to several fold.  相似文献   

13.
The objective of this paper is to compare the carbon emissions produced as a result of product consumption by the residents of an Irish city-region, that is Limerick City and its environs. The resulting carbon footprints are used to compare imports of food items, manufactured products and construction materials with domestic production as well as changes between 1996 and 2002. The total ecological footprints (EF) associated with product consumption are also calculated by aggregating the theoretical land required to sequester carbon emissions and the terrestrial land area appropriated for agricultural production and industrial activity. It is suggested that this approach be used to allocate producer or consumer responsibility for environmental impacts from trade.  相似文献   

14.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

15.
A Sensitivity Analysis of Nitrogen Losses from Dairy Farms   总被引:2,自引:0,他引:2  
International attention has focused on agricultural production systems as non-point sources of pollution affecting the quality of streams, estuaries and ground water resources. The objective of the current study was to develop a model of nitrogen management on the dairy farm, and to perform sensitivity analyses in order to determine the relative importance of manipulating herd nutrition, manure management and crop selection in reducing nitrogen (N) losses from the farm. The importance of the method of N input to the farm (purchased feed, legume fixation, inorganic fertilizer, imported manure) was investigated, and the potential to reduce N losses from dairy farms was evaluated. Nitrogen balance equations were derived, and related efficiency coefficients were set to reference values representing common management practices. Total farm N efficiency (animal product N per N input), and N losses per product N were determined for different situations by solving the set of simultaneous equations. Improvements in animal diet and management that increase the conversion of feed N to animal product by 50% would increase total farm N efficiency by 48% and reduce N losses per product by 36 to 40%. In contrast, reducing losses from manure collection, storage and application to improve the percentage of manure N that becomes available in soil by 100% would only improve total farm N efficiency by 13% and reduce total N losses by 14%. Selecting crops and management that can use soil nutrients 50% more efficiently would improve total farm efficiency by up to 59% and reduce N losses by up to 41% depending on the predominant nitrogen sources to the farm. Legume production would reduce N losses per product compared with non-legumes. There was more than a five fold difference in N losses per animal product N between the most extreme scenarios suggesting considerable opportunity to reduce N losses from dairy farms.  相似文献   

16.
Climate change affects public land ecosystems and services throughout the American West and these effects are projected to intensify. Even if greenhouse gas emissions are reduced, adaptation strategies for public lands are needed to reduce anthropogenic stressors of terrestrial and aquatic ecosystems and to help native species and ecosystems survive in an altered environment. Historical and contemporary livestock production—the most widespread and long-running commercial use of public lands—can alter vegetation, soils, hydrology, and wildlife species composition and abundances in ways that exacerbate the effects of climate change on these resources. Excess abundance of native ungulates (e.g., deer or elk) and feral horses and burros add to these impacts. Although many of these consequences have been studied for decades, the ongoing and impending effects of ungulates in a changing climate require new management strategies for limiting their threats to the long-term supply of ecosystem services on public lands. Removing or reducing livestock across large areas of public land would alleviate a widely recognized and long-term stressor and make these lands less susceptible to the effects of climate change. Where livestock use continues, or where significant densities of wild or feral ungulates occur, management should carefully document the ecological, social, and economic consequences (both costs and benefits) to better ensure management that minimizes ungulate impacts to plant and animal communities, soils, and water resources. Reestablishing apex predators in large, contiguous areas of public land may help mitigate any adverse ecological effects of wild ungulates.  相似文献   

17.
18.
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.  相似文献   

19.
Due to its nature, agricultural land use depends on local site characteristics such as production potential, costs and external effects. To assess the relevance of the modifying areal unit problem (MAUP), we investigated as to how a change in the data resolution regarding both soil and land use data influences the results obtained for different land use indicators. For the assessment we use the example of the greenhouse gas (GHG) emissions from agriculturally used organic soils (mainly fens and bogs). Although less than 5 % of the German agricultural area in use is located on organic soils, the drainage of these areas to enable their agricultural utilization causes roughly 37 % of the GHG emissions of the German agricultural sector. The abandonment of the cultivation and rewetting of organic soils would be an effective policy to reduce national GHG emissions. To assess the abatement costs, it is essential to know which commodities, and at what quantities, are actually produced on this land. Furthermore, in order to limit windfall profits, information on the differences of the profitability among farms are needed. However, high-resolution data regarding land use and soil characteristics are often not available, and their generation is costly or the access is strictly limited because of legal constraints. Therefore, in this paper, we analyse how indicators for land use on organic soils respond to changes in the spatial aggregation of the data. In Germany, organic soils are predominantly used for forage cropping. Marked differences between the various regions of Germany are apparent with respect to the dynamics and the intensity of land use. Data resolution mainly impairs the derived extent of agriculturally used peatland and the observed intensity gradient, while its impact on the average value for the investigated set of land-use indicators is generally minor.  相似文献   

20.
The aim of this study was to explore stakeholder perceptions of the contribution of an Automatic Milking System (AMS) to sustainable development of organic dairy production in Denmark and the Netherlands. In addition, reasons for the current difference in AMS use on organic dairy farms between both countries were explored. To answer above mentioned aims, farmers and advisors in both countries were interviewed using a focus group approach. Questions of the interviews were based on a literature review on sustainability issues affected by introduction of AMS. Participants expressed no moral problems regarding AMS use. They, however, pointed out uncertainty about the economic gain, difficulties with grazing, adaptation problems to technology, and image problems towards consumers. The latter results from a reduction in grazing time affecting both animal welfare and product quality. The participants did not recognize eutrophication, as result of high stocking density on farmstead lots, as a problem caused by AMS. The milk quality problem related to AMS use, although acknowledged as crucial towards consumers, was not prioritized very highly, especially not by the farmers in both countries. All groups were, however, unanimous in their perception of how important image was as far as the consumers are concerned. The perception analysis revealed that Dutch participants were more concerned about the economic payoff of AMS use, and showed more reluctance towards enlargement than Danish ones. In addition, they acknowledged the small-scale naturalness of organic production. These differences in perception could possibly explain observed differences in AMS use in organic dairy production between Denmark and the Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号