首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究超细聚苯乙烯微球粉体的燃爆特性,通过粉尘层最低着火温度测试装置、MIE-D1.2最小点火能测试装置、20 L球形爆炸测试装置,对其最低着火温度、最大爆炸压力、最小点火能量(MIE)等爆炸特性参数进行测定,探讨了加热温度、点火延滞时间、粉尘质量浓度、粉尘粒径对粉体燃爆特性的影响。结果表明:超细聚苯乙烯微球粉尘层在350℃左右时会发生无焰燃烧,且加热温度越高,粉体粒径越小,粉尘层发生着火时所需的时间越短;当粉体质量浓度为250 g/m3时,最大爆炸压力达到0.65 MPa,质量浓度为500 g/m3时,最大爆炸压力的上升速率达90 MPa/s以上;随点火延滞时间增加,最小点火能表现出先缓慢减小再急剧增大的规律;随粉尘质量浓度增加,最小点火能逐渐降低,当粉尘质量浓度超过500g/m3后逐渐趋于稳定。  相似文献   

2.
利用激光粒度仪对三环唑粉尘的粒径分布进行分析,并用20 L爆炸球测试装置、哈特曼管装置探讨了粉尘质量浓度、点火延迟时间、点火能量、粒径分布对粉尘爆炸的影响并总结了相关规律。实验结果表明:粉尘粒度是影响粉尘最小点火能和爆炸下限的单调因素,粉尘质量浓度是影响粉尘爆炸压力的极值因素,点火延迟时间是影响粉尘最小点火能的极值因素。  相似文献   

3.
为探究混合金属粉尘爆炸危险性及与单一粉体爆炸特性差异,确保车间安全生产,采用粉尘云点火能量测试系统对车间混合金属粉尘及铝粉最小点火能量在不同影响因素下的变化规律及2种粉尘火焰变化特征进行测试。研究结果表明:混合金属粉尘和铝粉最小点火能量在一定范围内(38~96 μm)与粒径呈正相关性,当混合金属粉尘粒径大于75 μm时,所需最小点火能量大于1 000 mJ,其爆炸敏感性迅速降低,此时铝粉仍有较强爆炸敏感性;2种粉尘最小点火能量随质量浓度增加呈先降低后升高的趋势,最小点火能分别为295,15 mJ,对应的敏感质量浓度为600,1 000 g/m3,混合金属粉尘在质量浓度为500~700 g/m3时具有较大爆炸危险性;同铝粉相比,混合金属粉尘点火能量更高、火焰燃烧时间更短、火焰高度更低、爆炸剧烈程度更弱。  相似文献   

4.
为研究粉尘质量浓度、粒径和点火延迟时间对木粉尘最大爆炸压力影响,以桑木粉尘为对象,利用1.2 L的Hartmann管进行试验。研究结果表明:最大爆炸压力随着粉尘质量浓度的增加先增大后减小,随着粉尘粒径的增大而减小,随着点火延迟时间的增大而增大。在单因素试验基础上,运用Design-Expert软件对Box-Behnken所设计的响应面试验方案分析,得到影响粉尘最大爆炸压力大小顺序为:点火延迟时间>质量浓度>粒径,同时Design-Expert软件预测出最危险爆炸强度的试验条件为:质量浓度840.24 g/m3,粒径260目,点火延迟时间12 s,最大爆炸压力为0.511 775 MPa,经检验,拟合性较好,为防爆设备本质安全强度设计提供了一定的参考价值。  相似文献   

5.
点火延迟时间对粉尘最大爆炸压力测定影响的研究   总被引:5,自引:3,他引:2  
根据粉尘云形成时颗粒分散及沉降的时间效应,指出目前国际通行的球型爆炸装置采用固定点火延迟时间测定粉尘最大爆炸压力的方法具有不确定性,并以煤粉为介质在20 L标准爆炸球装置上进行系列爆炸实验,研究装置点火延迟时间对粉尘爆炸压力的影响。结果表明:点火延迟时间对粉尘爆炸压力测定有十分显著的影响,不同粒径粉尘的最大爆炸压力有不同点火延迟时间,目前仅以气相湍流度所确定的固定点火延迟时间下,所测粉尘最大爆炸压力可能严重偏离实际。  相似文献   

6.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   

7.
为了研究点火延迟时间、喷尘压力、粉尘浓度和铝粉粒径对铝粉最小点火能的影响,本文利用1.2L哈特曼管实验装置对200~500目的铝粉最小点火能进行测试,得出结论如下:实验测得铝粉最小点火能为38.6~48.9m J,最佳喷粉压力为110k Pa、粉尘敏感浓度为750 g/m~3;根据拟合函数求得铝粉最佳喷尘压力为104k Pa,铝粉敏感浓度为758 g/m~3。试验数据和拟合数据接近,试验可靠。铝粉最小点火能随着点火延迟时间、喷粉压力、粉尘浓度的增大先降低后增大;铝粉最小点火能随着粒径的减少而减小。  相似文献   

8.
为探究面粉爆炸实验中粉尘质量浓度、点火能量、点火延迟时间对面粉爆炸的影响,采用正交实验法并利用20 L球形爆炸测试装置比较研究了粉尘质量浓度、点火延迟时间以及点火能对面粉爆炸的影响程度.结果表明:对最大爆炸压力影响最为显著的因素是点火延迟时间,对最大爆炸指数影响最为显著的因素是粉尘质量浓度;在实验浓度范围内,存在最佳实...  相似文献   

9.
为了解桑木粉尘着火敏感性以保证安全生产,采用标准Godbert-Greenwald恒温炉和热板测试装置系统地研究粉尘粒径、粉尘云浓度、喷粉压力、堆积厚度对粉尘最低着火温度的影响。结果表明:测试条件下,粉尘粒径从80减小到140目时,粉尘云最低着火温度从480℃降至450℃;粉尘云质量浓度从212 g/m~3增加到1 696 g/m~3时,粉尘云最低着火温度从490℃到470℃;喷粉压力从0.02 MPa增加到0.1 MPa时,粉尘云最低着火温度从500℃到485℃。堆积厚度为5 mm,粉尘粒径从80目减小到140目时,粉尘层最低着火温度从360℃到325℃;粉尘粒径为100目,堆积厚度从1 mm增加到7 mm时,粉尘层最低着火温度从390℃降至340℃。在同一粒径范围内,桑木粉尘云最低着火温度比粉尘层最低着火温度高120℃。因此,木材加工企业在防爆电气设备选型时,应参考相应木粉尘最低着火温度值,同时应在生产中采取措施避免粉尘堆积。  相似文献   

10.
针对湿法成型工艺硫磺粉尘进行燃烧爆炸特性参数测试,对目数范围介于16~35目,35~60目,60~80目,80~100目,100~120目,120~160目,160~200目,200目筛下八组硫磺粉尘的:粉尘层着火温度、粉尘云最低着火温度、粉尘云最小点火能以及爆炸下限四个参数进行了测试,确定了不同粒径分组硫磺粉尘的燃烧爆炸参数。为硫磺湿法成型系统硫磺粉尘浓度监控标准的制定提供依据。  相似文献   

11.
为深入研究玉米淀粉粉尘的着火机制和燃烧行为,分别采用同步热分析仪和粉尘云着火传播试验平台试验研究5种不同粒径的玉米淀粉粉尘云着火特性,观察粒径对粉尘云着火特征温度、着火特征指数和着火延迟时间等参数的影响。试验结果表明:随着粉尘粒径的减小,玉米淀粉的着火特征温度值均有所减小,着火特性指数越大,小粒径范围的玉米淀粉粉尘云更容易着火点燃;着火延迟时间与玉米淀粉粒径间存在显著的二次函数关系,粉尘粒径越小,玉米淀粉粉尘云着火所需时间越短。  相似文献   

12.
为分析不同粉尘因密度的差异对20 L球形爆炸装置球罐内粉尘分散过程流场变量变化和点火延迟时间的影响,利用CFD数值模拟的方法,研究了3种不同密度的粉尘在球罐分散过程中湍流动能、流场速度、粉尘浓度3种流场变量在球心处的变化规律。研究结果表明:在其他条件一致的情况下,粉尘密度越小,湍流动能的峰值越小,粉尘云浓度和流场速度的峰值则越大;粉尘密度对湍流动能的增值速率没有影响,而粉尘密度越小,流场速度和粉尘浓度的增值速率越快,粉尘浓度衰减至稳定值的时间也越短。表明粉尘密度越小,点火延迟时间也越小,因此,建议铝粉点火延迟时间在50~60 ms之间,锆粉和锌粉在60~80 ms之间。  相似文献   

13.
为预防和减轻硬脂酸粉加工、储存和运输过程中的燃爆危害,采用Godbert-Greenwald恒温炉分别研究质量浓度、分散压力、惰性粉体质量分数对硬脂酸粉尘云最低着火温度的影响规律。研究结果表明:硬脂酸粉尘云的最低着火温度随质量浓度和分散压力的增加先减小后增大,当质量浓度和分散压力分别为485.4 g/m3,15 kPa时,硬脂酸粉尘云最低着火温度达到最小;添加少量惰性粉体增大了硬脂酸粉尘云分散性,对硬脂酸粉尘云最低着火温度的降低起到促进作用;随惰性粉体质量分数的增加,硬脂酸粉尘云最低着火温度先迅速增大后增速变缓;SiO2通过物理作用抑制硬脂酸粉尘云燃烧,Al(OH)3除物理作用外还通过化学分解参与自由基碰撞,可有效提升硬脂酸粉尘云的最低着火温度。  相似文献   

14.
为了预防甘薯粉尘爆炸事故的发生,本文研究点火延迟时间对甘薯粉尘爆炸的影响规律,利用20 L球形爆炸仪研究甘薯粉尘的爆炸特性及其在200 g/m3,500 g/m3和800 g/m3质量浓度下通过改变点火延迟时间的爆炸规律。结果表明:粉尘的最佳点火延迟时间与浓度有关,在该点火时间下所测得的最大爆炸压力均高于在固定点火延迟时间下的测量值,60 ms的固定点火延迟时间不适用于甘薯粉尘爆炸测试。  相似文献   

15.
为更好地探索多相混合物的爆炸特性,以铝粉、乙醚、空气为研究对象,基于20 L球型爆炸罐建立三维计算模型,对气固两相和气液固三相混合物的分散过程进行数值模拟,以分析不同多相混合物分散过程的差异,并为测量多相混合物爆炸下限时的点火延迟时间设定提供参考。监测分析铝粉浓度粒子分布、流场内部湍流动能以及液相体积百分数等的演化过程,讨论混合物分散效果的差异,并确定测量爆炸下限的点火延迟时间。研究结果表明:实验工况下,液相的存在会降低粉尘云团的湍流动能、降低其扩散速度,并使粉尘云内部浓度更均匀。测量多相混合物爆炸下限时,三相混合物的最佳点火延迟时间早于气固两相混合物10~20 ms。  相似文献   

16.
为分析煤粉粉尘的爆炸特性,利用20 L爆炸球测试装置与Fluent软件,试验研究煤粉粒径、质量浓度对煤粉云最大爆炸压力、爆炸指数的影响。结果表明,当试验环境温度为293~303 K时,点火能量为10 k J,粒径为26,73和115μm等3种粉尘云的最大爆炸压力均随着粉尘质量浓度的增加先升后降,在350 g/m3处达到最大值。同一粉尘质量浓度下,最大爆炸压力、爆炸指数均随着粒径的减小而增大。在60~120 ms时间内,粒径为26μm、质量浓度为350 g/m3的粉尘颗粒在球体内能保持一定的稳定状态,60 ms左右扩散达到相对均匀状态。爆炸后,燃烧最高温度为2 060 K,未燃区温度由300 K上升至375 K。粒径为26μm的煤粉尘云爆炸危险性等级为Ⅱ级,粒径为73和115μm的煤粉尘云爆炸危险性等级为Ⅰ级。  相似文献   

17.
本文选取最小点火能、爆炸下限、粉尘云最低着火温度、最大爆炸压力、最大爆炸压力上升速率、最大爆炸指数和粉尘层最低着火温度这些特性参数,利用多元统计方法中的因子分析法,对小麦淀粉、玉米淀粉、豆粉、石松子粉、铝粉、镁粉、褐煤粉尘、硫磺粉尘进行分析与评估。结果表明,粉尘爆炸参数的信息重叠度大,抽取出的两个公共因子的累积贡献率可达到83.799%。以公共因子1和公共因子2的贡献率为权数,构造综合评估函数;对以上几种粉尘的爆炸危险性进行了排序。  相似文献   

18.
为探究超细粉体惰化剂对铝合金抛光伴生粉尘爆炸特性的影响规律,利用标准化实验装置及自行搭建的实验平台,在对爆炸基本参数进行测试的基础上,分别研究超细CaCO3粉体对抛光废弃物粉尘点燃敏感度的钝化作用以及对爆炸火焰传播进程的惰化效果,并在相同条件下与同等粒径高纯度铝粉的实验效果进行比对。研究结果表明:铝合金抛光废弃物粉尘最小点火能量为280 mJ,而同等粒径高纯度铝粉最小点火能量为35 mJ;在铝合金抛光废弃物粉尘质量浓度为300 g/m3条件下,发生爆炸的火焰传播速度峰值为7.4 m/s,约为高纯度铝粉的57%,铝合金抛光废弃物粉尘的爆炸敏感度及猛烈度均低于高纯度铝粉;当超细CaCO3粉体的惰化比为30%时,可将铝合金抛光废弃物粉尘的最小点火能量钝化至约1 J,爆炸火焰失去持续传播能力,惰化作用效果充分显现。  相似文献   

19.
为了研究初始温度变化对湿法成型硫磺粉尘燃烧爆炸特性的影响,通过对初始温度分别为35℃、 45℃、 55℃、 65℃、 75℃的硫磺粉尘试样进行测试,发现随着初始温度的上升硫磺粉尘的粉尘云最低着火温度,粉尘云最小点火能逐渐降低;随着初始温度的上升硫磺粉尘的爆炸下限和粉尘层最低着火温度不发生变化。随着温度的升高,硫磺粉尘的燃烧爆炸危险性增加,因此在气温较高的夏秋季节要提高硫磺粉尘燃爆的防护等级。  相似文献   

20.
为研究高密度聚乙烯(HDPE)粉尘燃爆及其泄爆特性,通过结合热重(TG)和差示扫描量热(DSC)分析高密度聚乙烯燃爆机理,利用20 L球形爆炸测试系统、最小点火能测定仪、最低着火温度测定仪等探究粉尘质量浓度对最小点火能(MIE)、最低着火温度(MIT)、最大爆炸压力(Pmax)和爆炸指数(Kst)的影响;在300 g/m3爆炸浓度及以上时,分析高密度聚乙烯泄放特性并探究在不同质量浓度下的泄放火焰特征。研究结果表明:随着HDPE粉尘质量浓度增加,最大爆炸压力先增加后减小、最低着火温度和最小点火能先减小后增加;泄爆压力峰值随着HDPE粉尘泄爆膜层数增加而升高,随着泄爆口径的增大而下降;在质量浓度为300 g/m3时,出现2次火焰长度较大值,且第2次泄放火焰更亮,燃烧面积更大;在质量浓度为400 g/m3时,产生2次火焰。研究结果可为预防聚乙烯粉尘爆炸事故以及减小相应事故损失提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号