首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为构建一套乳酸合成丁酸的工艺,在开放体系中,驯化培养丁酸合成混合菌,并对发酵工艺条件进行系统研究和优化.首先通过单因素试验设计确定各因素的最佳水平范围.结果表明,p H值控制在5.5-7.5之间,乳酸浓度控制在20-40 g/L之间,外加乙酸浓度控制在1.5-3.5 g/L之间可以得到丁酸的最大产率.在此基础上,进一步对p H值、乳酸浓度和外加乙酸浓度进行三因素三水平的Box-Behnken试验设计及响应面法分析,以丁酸产率作为响应值,探究影响丁酸产率的各因素之间相互作用.通过方差分析显著性及求解回归方程得到最优发酵工艺条件:在p H值为6.72,乳酸浓度为27.83 g/L,外加乙酸浓度为2.79 g/L时,丁酸最高产率理论可达2.47 g L~(-1) d~(-1).验证试验得到的结果是丁酸产率为2.43g L~(-1) d~(-1),与预测值接近,较优化前产率提高了47.27%.此外,利用高通量测序技术(Miseq)对微生物群落结构进行分析,发现混合微生物中占优势的菌群是Clostridium sensustricto、Lactobacillus与Clostridium IV,其丰度分别为69.35%、15.41%与10.05%.利用本发酵新工艺能够得到相对稳定的丁酸产率,因此在工业中具有广阔的应用前景.  相似文献   

2.
葡萄糖和氯化钠对米根霉利用鱼粉废水生成乳酸的影响   总被引:1,自引:0,他引:1  
米根霉AS3.254能较好地利用鱼粉废水生成乳酸,葡萄糖和NaCl浓度能显著影响该过程的实现.当外加葡萄糖浓度为30g/L,发酵培养72h的鱼粉废水CODCr去除率为97.8%,乳酸产量为19.4g/L,生物量为3.56g/L;最大乳酸得率和总氮去除率分别为0.66g/g和55%.鱼粉废水中较高浓度氯化钠(NaCl)能抑制菌株生长,降低其产酸能力.当NaCl浓度大于12g/L时,菌株生长被完全抑制,产酸能力完全丧失.图4表1参20  相似文献   

3.
人工窖泥对于浓香型白酒的生产酿造起着至关重要的作用.前期研究中首次分离到能够利用乳酸合成己酸的新型产己酸菌,一种瘤胃梭菌(Clostridium sp. CPC-11,CGMCC No. 9926),该菌属于瘤胃菌科(Ruminococcaceae)中Clostridium cluster Ⅳ的一个新种.在此基础上,通过16S rDNA高通量测序技术(MiSeq)结合有机酸与酯类含量分析研究CPC-11在强化人工窖泥的制作过程中对窖泥微生物群落结构和理化指标的影响.结果显示,经35 d培养,窖泥微生物群落多样性显著降低,表明窖泥中杂菌不断减少,有益菌不断增加.其中,芽孢乳杆菌科(Sporolactobacillaceae)与瘤胃菌科(Ruminococcaceae)成为最主要的优势类群,丰度分别为66.2%和22.8%.窖泥中己酸的含量在前21天不断升高,但在35 d时显著下降(P 0.05);乳酸和乙醇呈不断升高趋势,而乙酸则缓慢下降,丁酸未有显著改变.酯类分析显示,四大酯类(乙酸乙酯、乳酸乙酯、丁酸乙脂和己酸乙酯)积累量均呈不断增加趋势.冗余分析(RDA)结果显示,窖泥中己酸含量与瘤胃梭菌(Clostridium cluster IV)呈正相关,与芽孢乳杆菌呈负相关;乳酸含量与芽孢乳杆菌、乳酸杆菌呈正相关.本研究表明新型己酸菌的强化可以在35 d内使己酸菌的相对丰度保持在22.8%,并显著提高己酸乙酯在窖泥中的累积量,促进窖泥快速成熟;结果可为改进人工窖泥的制作方法和提高人工窖泥的品质提供理论依据.(图5表3参31)  相似文献   

4.
餐厨垃圾具有含水率高、有机物含量高、易腐败等特点,若处理不当,必然造成资源浪费和环境污染。餐厨垃圾减量化、无害化、资源化处理是环境科学领域近年来关注的热点与难点。为解决餐厨垃圾的减量化问题,同时产生清洁能源——氢气,利用自制小型序批式厌氧发酵产氢反应装置,以蒸煮餐厨垃圾为发酵底物,接种污水处理厂剩余污泥进行厌氧发酵产氢,在底物与接种物质量比为4:1,温度为37℃的条件下,研究p H对蒸煮餐厨垃圾厌氧发酵产氢的影响。结果表明,厌氧发酵底物中乙酸和丁酸是挥发性酸(VFA)中主要的组成部分,占总挥发性酸的80%以上,同时含有少量的丙酸,属于典型的丁酸型发酵。初始p H为9.0时,厌氧发酵效果最佳,累积产气量和产氢量最大,分别为748 m L和371 m L;在整个厌氧发酵过程中氢气的体积分数最高可达80.5%,平均产氢速率为10.31 m L·h~(-1),单位产氢量(以VS计)为72.9 m L·g~(-1),总固体(TS)和挥发性固体(VS)的去除率分别高达26.6%和34.4%;脱氢酶的活性呈现出先增强后减弱的趋势,产氢速率与脱氢酶的活性呈正相关;发酵反应进行到16 h时,脱氢酶的活性最好,此时产氢速率最大,为19.2 m L·h~(-1)。因此,调节初始p H为9.0,可以提高餐厨垃圾产氢效率,实现餐厨垃圾减量化和产生清洁能源的双重目标。  相似文献   

5.
生物电化学系统固定二氧化碳同时产生乙酸和丁酸   总被引:1,自引:0,他引:1  
生物电化学系统用于微生物电合成,可原位利用污水中的能量将二氧化碳固定,并生产有机物.通过构建生物电化学系统,利用混合菌作电催化剂还原二氧化碳生成乙酸和丁酸.设定阴极电势-0.75 V(vs Ag/AgCl),10 d的反应周期内,乙酸最大积累浓度为251.89 mg/L;丁酸从第3天开始生成,最大积累浓度为89.42 mg/L.系统总电子回收率可达85.04%.电化学分析表明生物阴极具有良好的催化活性.PCR-DGGE分析生物阴极主要菌群为醋酸杆菌属(Acetobacterium)和拟杆菌属(Bacteroides).本研究证明了生物阴极具有以二氧化碳为原始底物合成乙酸,并进一步延伸碳链合成中链脂肪酸的能力,对进一步开发微生物电合成技术具有重要参考价值.  相似文献   

6.
资源化利用是有机废弃物处理处置的重要方向,降低成本和提高产物的附加值是推动有机废弃物资源化利用的重要引擎,也是巨大挑战.近年来,在该领域发展出了一种基于羧酸平台的乳酸合成己酸的碳链延长新技术.本文首先介绍了乳酸碳链延长技术的代谢机制以及相关功能微生物.该技术的核心是利用乳酸作为电子供体,在特定微生物(如埃氏巨型球菌Megasphaera elsdenii、瘤胃球菌Ruminococcaceae strain CBP6以及反应器混合微生物)的作用下,将乙酸等短链脂肪酸经碳链延长过程转化为含有6个碳原子的中链脂肪酸己酸.然后详细介绍了该技术在富含乳酸的废弃物中的应用研究进展.在有机质含量比较高的废弃物如餐厨垃圾、乳清废水、酿酒废水中均存在高浓度的乳酸,这一类废弃物具有最终资源化为己酸的潜力.进一步分析了影响该技术效能的关键因子,包括环境pH、温度以及电子供体和受体.最后总结了乳酸碳链延长技术相对于传统废弃物资源化处理技术的优、劣势.乳酸碳链延长技术在有机废弃物的资源化处理领域已表现出巨大的应用潜力,未来需要进一步提高己酸产物效价和降低分离提纯成本.(图2表3参66)  相似文献   

7.
植物根际促生菌(PGPR)具有促进植物生长的作用.从盐碱地植物根际土壤中分离筛选耐盐菌,测定其在盐胁迫下的1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性、吲哚乙酸(IAA)合成能力、嗜铁素合成能力、无机磷溶解能力,以及在Ashby无氮培养基上的生长情况;并对同时具有以上促生功能的耐盐菌进行不同盐浓度下的促生功能测定、小黄白(白菜Brassica pekinensis的一个品种)种子萌发促生实验和菌株鉴定.结果显示,在筛选得到的15株耐盐菌中,菌株YZX4在10 g/L NaCl浓度下同时具有多种促生特性.在不同盐浓度下促生功能测定实验中,当盐浓度为10 g/L时,菌株的ACC脱氨酶活性(以α-KA/Pr计)、IAA合成量和嗜铁素相对含量最高,分别为11.07(±1.89)μmol mg~(-1)h~(-1)、36.42 (±1.81) mg/L和0.61 (±0.15),且随着盐浓度的增加而降低;在20 g/L盐浓度下,该菌株的固氮量、有机磷溶解量和无机磷溶解量最高,分别为4.79 (±1.61) mg/L、1.68±(0.04) mg/L和23.77 (±1.30) mg/L.在小黄白种子萌发促生实验中,当盐浓度为5.84 g/L时,YZX4的菌液(105 CFU/mL)对小黄白的种子萌发率、幼苗根、茎长和平均鲜重分别提高了7.19%、17.33%、23.85%和22.69%.根据形态特征、生理生化鉴定结果和16S rDNA序列分析,初步确定菌株YZX4为油菜假单胞菌(Pseudowonas brassicacearum).上述研究结果表明在盐胁迫下同时具备多种促生特性的菌株YZX4可作为盐碱地改良微生物菌剂的优良菌源.(图6表4参37)  相似文献   

8.
芳香基手性胺醇是许多手性药物合成的重要手性砌块,生物催化不对称还原前手性酮是合成该类醇的重要方法之一.以α-氨基苯乙酮盐酸盐为模型底物从土壤中筛选获得两株能分别高立体选择性催化底物产生R型、S型相应醇的菌株,对映体过量值(e.e.)分别为99%和77%,编号为1403和4802,鉴定菌株所属为镰刀菌属和地霉属.对两株菌培养时期和转化条件的研究表明镰刀菌1403最适生长时间为24 h,最优菌体浓度20 g/L,最优底物浓度5 g/L;地霉4802最适生长时间24 h,最优菌体浓度80 g/L,最优底物浓度3 g/L.底物特异性研究表明,菌株1403和4802均可转化α-氯代苯乙酮、α-溴代苯乙酮、α-羟基苯乙酮和苯乙酮为相应醇,且以α-羟基苯乙酮为底物时,其产物均为S型,e.e.值达99%.  相似文献   

9.
合成气(主要包括CO、H_2和CO_2)通过生物转化生产高附加值的生物燃料和化学品已引起人们广泛关注,微生物菌群作为生物转化的酶催化剂对合成气发酵产物组成和效率十分关键.通过富集得到高温条件下分别稳定转化CO、甲酸钠和合成气的厌氧菌群,探究CO与甲酸钠转化菌混培物和合成气转化菌发酵合成气生成乙酸的能力,并分析其微生物群落结构.结果显示,CO-甲酸钠转化菌混培物与合成气转化菌在合成气发酵前期主要进行CO的产氢反应生成H_2和CO_2以及同型产乙酸反应生成乙酸,CO利用率为100%,CO反应速率分别为6.93和6.34 mmol L~(-1)d~(-1);随后同型产乙酸菌利用H_2和CO_2继续合成乙酸,两者的乙酸最大累积量分别为9.11 mmol/L和8.01 mmol/L.CO-甲酸钠转化菌混培物主要菌群为Thermoanaerobacterium、Romboutsia、Ruminococcus、Clostridium、Eubacterium、Moorella和Desulfotomaculum属,合成气转化混菌则主要含有Romboutsia、Thermoanaerobacterium、Moorella、Eubacterium、Acetonema和Clostridium属,其中同型产乙酸菌广泛分布于Ruminococcus、Clostridium、Eubacterium、Moorella和Acetonema属.本研究表明复配CO和甲酸钠转化菌可用于合成气高温发酵产乙酸,且转化能力优于合成气转化菌,结果可为合成气混菌发酵提供微生物资源和技术参考.  相似文献   

10.
木质纤维素沼气化是生物能源领域最具潜力的技术之一,需要各功能菌群的协同作用和调控.本文综述了水解菌群、丙酸和丁酸互营氧化菌群以及乙酸产甲烷中各类菌群的协同效能.在水解阶段,厌氧真菌与嗜氢甲烷菌、纤维素降解菌和耗氢菌形成互利菌群后,代谢途径发生改变,实现了NAD+的再生,提高了水解效率;水解菌与非水解菌通过功能互补、抑制解除方式发挥作用.丙酸和丁酸互营氧化菌群形成后,适应性变化主要体现在种间距离缩短,电子转移加快及相关基因表达水平提高等方面.高温、高乙酸及高氨氮条件下,乙酸互营氧化产甲烷途径增强,使代谢途径更加灵活.未来菌群研究可从群体感应信号和基因水平转移两方面展开:借助调控因子,结合基因和蛋白质组学等手段深入研究群体感应信号在功能菌群形成中的作用;在菌群的适应性机理方面,通过组学分析来揭示基因水平转移在菌群适应性变化及系统进化中的意义,以便为重塑菌群结构和功能改造提供理论支持.  相似文献   

11.
在利用克雷伯氏菌(Klebsiella pneumoniae)联产3-羟基丙酸和1,3-丙二醇过程中,副产物对碳流的竞争是限制产物合成的重要因素.通过将来源于大肠杆菌的醛脱氢酶基因在budC缺失型克雷伯氏菌中过表达,研究budC缺失对克雷伯氏菌联产1,3-丙二醇和3-羟基丙酸的影响.与K.pneumoniae ZG27/pUC19-aldH相比,缺失型菌株K.pneumoniae ZG40(budC?)/pUC19-aldH发酵60 h后,1,3-丙二醇和3-羟基丙酸的产量分别为64.0 mmol/L和134 mmol/L,3-羟基丙酸转化率提高了22%,副产物中除2,3-丁二醇外均有不同程度降低.本研究表明,过表达醛脱氢酶的重组克雷伯氏菌能够积累3-羟基丙酸,但在微氧发酵24 h后,1,3-丙二醇逐渐向3-羟基丙酸转化;而budC的缺失进一步促进了1,3-丙二醇向3-羟基丙酸的转化.  相似文献   

12.
蝇蛆生物转化餐厨垃圾的效能评估   总被引:2,自引:0,他引:2  
餐厨垃圾具有资源性和危害性.利用家蝇幼虫(蝇蛆)的食腐性以及生命周期短特性研究餐厨垃圾处理,探究最佳蝇蛆接种量,而后分析此接种量下处理前后堆体的理化指标,并对蝇蛆进行营养评价.结果表明,蝇蛆处理餐厨垃圾的最佳接种量约为13 300只/kg,此接种量下餐厨垃圾的减量可达55%,减量指标为13.8;处理后堆体的含水量、有机质、全氮、全磷、全钾总量分别下降71.1%、63.9%、75.4%、8.13%、5.3%,碳氮比和p H分别为31.2、8.43,均满足好氧堆肥所需的初始条件;蝇蛆生物转化餐厨垃圾的平均产率为26.4%,转化效率达79.7%;所得干蛆的蛋白质含量接近50%,综合营养价值高于国产鱼粉及豆饼;多烯脂肪酸含量(亚油酸、亚麻酸等)超过智利鱼粉,深加工潜力大.上述结果表明蝇蛆生物转化餐厨垃圾效能显著,具有较好发展前景.  相似文献   

13.
9α-羟基雄甾-4-烯-3,17-二酮(9α-OH-AD)是重要的甾体药物中间体,多用于生产糖皮质激素类药物.通过微生物法转化植物甾醇生成9α-OH-AD,将为工业化生产提供极大便利.从榨油厂、油菜花田等多处土壤中筛选出1株高效转化植物甾醇为9α-OH-AD的菌株,根据16S r DNA序列比对并结合菌株的形态特征、生理生化特征分析,鉴定其为分枝杆菌属,并将其命名为Mycobacterium sp.LY-1.该菌在往复式摇床中培养,当培养条件为温度30℃、转速120 r/min、转化时间7 d、底物添加浓度为5 g/L时,9α-OH-AD产物得率达到16.2%.为解决底物植物甾醇在水中溶解性较差的问题,考察了助溶剂(吐温80、β-环糊精)对植物甾醇转化产甾药中间体9α-OH-AD效率的影响.经过筛选,最终确定最适助溶剂为0.1%的吐温80.在此条件下,当底物投料浓度为15 g/L时,9α-OH-AD的浓度达到3.9 g/L,产物摩尔得率提高至35.1%.本研究表明菌株LY-1转化效率好,可为后续的代谢工程改造提供便利并为后期用于工业化生产奠定基础.  相似文献   

14.
“双耐”细菌-香根草对铅镉复合污染土壤的修复机理   总被引:1,自引:0,他引:1  
将"双耐"细菌与重金属富集植物——香根草构建修复体系,探讨其对铅(Pb)、镉(Cd)复合污染土壤的联合修复效应.试验为双因素完全随机区组试验,A因素为铅镉污染浓度,设置6个水平,即Cd0Pb0、Cd10Pb400、Cd20Pb800、Cd40Pb1200、Cd60Pb1600、Cd80Pb2000(数据单位为mg/kg).B因素为K7菌加菌量,设置3个水平,加菌量为0、1.5、3.0 g.结果表明:(1)"双耐"细菌能提高香根草的生物量.当处理为Cd10Pb400加菌1.5 g时,提高3.9%;当Cd40Pb1200加菌1.5 g时,提高13.2%,加菌量为3.0 g时增加30.46%;当Cd60Pb1600加菌1.5 g时,提高9.46%;当Cd80Pb2000加菌3.0 g时,提高7.02%.(2)"双耐"细菌对香根草地上和地下部铅、镉的吸收具有促进作用.当土壤中铅含量1 200 mg/kg,加菌量1.5 g的香根草地上铅含量分别提高了1.9 mg/kg(Cd10Pb400)、3.6 mg/kg(Cd20Pb800)、4.1 mg/kg(Cd40Pb1200).对于镉而言,当加菌量为1.5 g时,地上部镉含量分别升高了314.7%(Cd10Pb400)、4 1.7%(Cd20 Pb800)、35.1%(Cd20Pb800)、103.5%(Cd40Pb1200)、57.8%(Cd6 0Pb1600).加菌后根部铅含量大于不加菌的根部铅含量,Cd40Pb1200处理时,根部铅浓度最大.相同铅、镉浓度处理时,加菌量为3.0 g的香根草根部镉含量比加菌量1.5 g的根部镉含量高.(3)加菌后的香根草根际土有效态铅、镉含量比不加菌的浓度低.香根草根际土有效态铅含量下降幅度最大的处理是Cd20Pb800加菌1.5 g,与对照组相比降低了30.22%.相同污染条件下,加菌3.0 g香根草根际土有效态镉含量最低."双耐"菌强化香根草修复铅镉污染土壤的机理可为修复铅镉污染土壤的实际应用提供理论依据和技术参考.  相似文献   

15.
UASB反应器处理COD/SO4^2—=0.5有机废水试验   总被引:1,自引:0,他引:1  
本文对使用UASB反应器处理COD/SO42-=0.5有机废水(温度为35±1℃)进行了较系统的研究。试验结果表明:(1)UASB反应器可以较好地处理COD/SO42-=0.5的有机废水,COD去除负荷与SO42-去除负荷之比(ΔCOD/ΔSO42-)在1.0左右。当COD和SO42-的进水负荷分别为1.036g/L/d和2.086g/L/d时,其去除率可达70%和30%以上;而当COD和SO42-的进水负荷分别为2.489g/L/d和4.977g/L/d时,去除率仍可达50%和30%。(2)反应器中的细菌主要是硫酸盐还原菌和发酵性细菌,而产甲烷菌含量很少。(3)反应器中硫化物的抑制浓度为300mg/L,相应的硫化氢浓度为129mg/L。  相似文献   

16.
为实现生活污水中油脂的生物降解和有效处理,从某生活污水处理厂的剩余污泥中分离出一株油脂降解菌用于油脂生物降解的研究。对该菌进行生理生化特性鉴定、16Sr DNA测序分析和系统发育树构建,结果显示该菌株与铜绿假单胞菌(Pseudomonas aeruginosa)具有很高的同源性。按6%(V/V)的接种量将该菌接种到以菜籽油(质量浓度为3 g·L~(-1))为唯一碳源的培养基中,在30℃,150 r·min~(-1)的恒温振荡培养箱中进行培养,采用紫外分光光度法每隔12 h测定油脂浓度,对其降解特性进行初步研究并发现该菌在72h内对油脂的降解率为55.37%。从接种量、pH、温度、NaCl质量浓度4个方面进行单因素培养条件优化实验,得到当接种量为12%(V/V)、pH为8、温度为30℃、NaCl质量浓度为2.5 g·L~(-1)时该菌对油脂的降解率分别为59.42%、61.28%、55.33%、64.14%。另外发现当接种量在2%—14%(V/V)、pH在4.0—9.0、温度在15—40℃、NaCl质量浓度在0—15g·L~(-1)时,该菌对油脂仍有降解效果,说明该菌株对外界环境具有一定的适应能力。将该菌应用于处理实际污水中的有机物,发现在优化条件下该菌对实际污水中的油脂和CODCr的降解率分别为40.50%和45.83%。结果表明在实验过程中该菌对油脂和实际污水中的有机物都具有一定的降解效果,可以为下一阶段的实际应用奠定基础,并为生物处理含油污废水提供更多的菌种选择。  相似文献   

17.
采用分批培养研究了从高浓度厌氧产氢活性污泥中筛选的优势菌种Clostridium papyrosolvens的发酵产氢能力.结果表明:该菌有较强的高糖耐受性和耐酸性,当葡萄糖浓度为30 g/L、pH阶段性控制在4.5时,发酵44 h葡萄糖消耗率为83.7%,总产气量达到3 081.3 mL/L,最高产气率为187.5 mL L-1 h-1,氢气含量为67.5%,比产氢率达1.06 mol(H2)/mol(葡萄糖).研究中选用了廉价的发酵产氢培养基,以玉米浆为氮源,以还原铁粉作氧化还原电位控制剂,省去了牛肉膏、蛋白胨等昂贵氮源以及L-半胱氨酸、维生素、无机离子等高成本组分,显著降低了纯菌发酵的培养基成本,获得了较好的产氢效果.图5表2参23  相似文献   

18.
1,2,4-丁三醇(BT)是重要的非天然化学品.为构建整合型BT合成菌株,实现木糖、葡萄糖共底物发酵,通过Red系统将基因kivD、xdh整合至Escherichiacoli基因组的xylAB、ptsHI、ptsG、crr位点,并尝试利用廉价的乳糖替代IPTG诱导外源基因表达.结果表明,外源基因整合至xylAB后,生物量降低28%,重组菌Escherichia coli W021能够代谢木糖合成BT(0.7 g/L).添加葡萄糖为共底物后生物量提高36%,但碳分解代谢抑制作用限制了木糖的代谢,BT产量降低14%.进一步整合代谢基因至不同的磷酸转移酶系统(PTS)位点,其中整合至ptsHI基因后BT产量最高,达到2.8g/L.优化葡萄糖、木糖浓度后,BT产量提高到3.6 g/L,进一步优化乳糖替代IPTG后BT产量为1.9 g/L.最后经发酵罐优化,BT产量提高到3.9 g/L,转化率为0.3 mol/mol.本研究构建整合型菌株在廉价乳糖诱导下共底物发酵合成BT,为后续放大研究提供了借鉴.(图6表2参24)  相似文献   

19.
L-苯甘氨酸是合成多种抗生素和抗癌药物的重要中间体,目前主要通过化学法合成.利用蜡样芽孢杆菌来源的亮氨酸脱氢酶(LeuDH)催化苯乙酮酸的还原氨基化合成L-苯甘氨酸,并偶联甲酸脱氢酶(FDH)进行辅酶再生,建立了一种新型的苯甘氨酸生物合成方法.结果表明,该辅酶再生体系可有效地用于L-苯甘氨酸的合成,且没有副产物残留,辅底物甲酸铵还可提供还原氨基化所需NH4+,随后对酶转化条件进行优化,最适转化条件为苯乙酮酸60 g/L,甲酸铵50.4 g/L,LeuDH 4 U/mL,FDH 2 U/mL,NAD+浓度0.14 g/L,p H 8.0以及30℃.在最优条件下,1 L的转化体系中,转化反应5 h,苯乙酮酸转化率达到99%,L-苯甘氨酸产量60.2 g/L,ee值99%.本研究为L-苯甘氨酸的工业生产提供了一种更加简单、高效、经济的生物合成途径.(图8表4参27)  相似文献   

20.
青霉菌对活性艳蓝 KN-R的吸附作用   总被引:3,自引:0,他引:3  
研究了青霉菌(Penicillium X5)对活性艳蓝KN—R的吸附作用.通过对培养液的波谱分析和宏观现象的观察,结果表明,在72h内,脱色是由吸附引起的.当染料的浓度为100mg/L时,活菌体对染料的吸附率可达88.66%.本实验还研究了对实际应用和吸附过程有影响的几个因素,包括葡萄糖、NaCl、温度和pH.结果表明:葡萄糖浓度在0-20g/L时,随着葡萄糖浓度的增加,菌体的干重相应增加,说明对活性艳蓝KN—R的吸附具有促进作用,但浓度在10-20g/L时,吸附作用不显著;而随着NaCl浓度(0-2%)的增加,吸附率却显著降低.最佳脱色温度为25℃,pH为4.0.活菌体与死菌体的生物吸附均符合Langmuir方程,活菌体比死菌体具有更好的吸附性能.吸附在菌丝体上的染料可以用甲酵进行洗脱,菌丝球在下次使用前用蒸馏水冲洗至pH中性,此菌丝球可重复使用3次.固8表2参11  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号