首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen metabolites of crufomate (4-tert-butyl-2-chlorophenyl methyl methylphosphoramidate, I) were identified in the excreta from rats given single oral doses of I. Compound I was not detected in either the urine or the feces. The metabolic reactions observed were N-and O-demethylation, oxidations of the t-butyl moiety, replacement of the H-N-CH3 with an OH moiety, hydrolysis of the phosphoramidate moiety to yield the phenol, conjugation with glucuronic acid, and combinations of these reactions. No ring dehalogenation or ring substitution was observed.  相似文献   

2.
A sheep dosed topically with 14C-crufomate (4-tert-butyl-2-chlorophenyl methyl methylphosphoramidate) excreted 45.5% of the 14C dose in the urine within 9 days. The feces contained 1.2% and the carcass 40.4% (this included the 37.7% of the dose remaining on the skin in the dosing area) of the dose. At sacrifice, the fat, liver, kidney, lung, and skin (where the dose was applied) contained the highest concentrations of 14C. Fourteen urinary metabolites were isolated and characterized by mass spectrometry. The metabolic reactions involved were oxidations of the t-butyl moiety, O-demethylation, replacement of the H-N-CH3 moiety with a hydroxyl group, oxidation of the N-methyl group to yield N-formyl phosphoramidates, hydrolysis of the phosphoramidate moiety to yield phenols, conjugation with glucuronic acid and combinations of these reactions.  相似文献   

3.
Precision-cut tissue slices of the anterior kidney from Atlantic cod (Gadus morhua) were prepared with a Krumdieck tissue slicer and exposed to 2-(2-chlorophenyl)-2-(4-chloro-(14C)phenyl)-1,1-dichlorethane (o,p(')-[14C]DDD) in vitro. Microautoradiography revealed irreversible o,p(')-DDD-derived binding confined to the glucocorticoid producing interrenal cells (adrenocortical analogues). This cell-selective binding was confirmed by means of autoradiography at different levels of resolution on Atlantic cod administered o,p(')-[14C]DDD intragastrically. The results provide evidence for a site-specific metabolic activation and irreversible binding of o,p(')-DDD in the interrenal cells, which, in turn, may modify glucocorticoid homeostasis.  相似文献   

4.
Recent studies have focused on enantiomeric behaviors of chiral organochlorine pesticides (OCPs) in biotic matrix because they provide insights into the biotransformation processes of chiral OCPs. In the present paper, a double in-line column chromatographic method was developed to effectively remove the lipid impurity in different biotic samples for clean-up of OCPs. After an initial Soxhlet extraction of OCPs from the biotic samples by a mixture of acetone and dichloromethane (DCM), dimethyl sulfoxide (DMSO) was directly added to the extract, and low boiling point solvents (acetone and DCM) were then evaporated. OCPs remained in DMSO were eluted via column 1 filled with silicon gel, and subsequently passed through column 2 packed with 15% deactivated florisil. This novel method was characterized by significant time and solvent savings. The recovery rates of alpha-HCH (hexachlorocyclohexane), beta-HCH, gamma-HCH and delta-HCH were 78.5+/-3.1%, 72.4+/-7.7%, 72+/-4.0% and 70.0+/-8.7%, respectively, and 92.5+/-3.8%, 79.7+/-6.7% and 83.4+/-6.5% for 1,1-dichloro-2-(2-chlorophenyl)-2-(4- chlorophenyl) ethylene (o,p'-DDE), 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chloro phenyl)ethane (o,p'-DDD) and 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) ethane (o,p'-DDT), separately. In addition, the separation efficiencies of the target compounds by both achiral and chiral gas chromatographic columns were satisfactory using the established method. Therefore, the double in-line column chromatography was a useful alternative method for pretreatment of OCPs in different biotic samples.  相似文献   

5.
Alkylphenol (AP) metabolites were characterized in the bile of Atlantic cod (Gadus morhua L.) after exposure to nine individual compounds (10mg/kg fish), 2-methylphenol (2-MP), 4-methylphenol (4-MP), 3,5-dimethylphenol (3,5-DMP), 2,4,6-trimethylphenol (2,4,6-TMP), 4-tert-butylphenol (4-t-BP), 4-tert-butyl-2-methylphenol (4-t-B-2-MP), 4-n-pentylphenol (4-n-PP), 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP), and a mixture (total dose; 13.5 mg/kg fish) of the nine APs by inter-muscular injection. The degree of alkylation ranged from methyl (C1) to heptyl (C7) and represents the types of APs present in produced water. Fish bile was collected on day 4 and 16 (exposure groups 2-MP, 3,5-DMP, 2,4,6-TMP and 4-t-B-2-MP) following exposure. Characterization of major metabolites was accomplished by enzymatic de-conjugation and analysis by high performance liquid chromatography connected to a fluorescence detector (HPLC-F) acquiring at ex/em 222/306 nm. Two solid phase extraction (SPE) columns were evaluated for clean-up of samples prior to analysis. Independent of alkyl homologue, the glucuronide conjugated APs were the most abundant metabolites (73-100%), whereas sulfates, glucosides and unchanged compounds were excreted in amounts of 0-21%, 0-6.1% and 0-6.3%, respectively. The total concentration of measured metabolites in the bile, determined as their respective APs after de-conjugation, increased with increasing degree of alkylation (3.2+/-2.6 microg/g bile for 2-MP and 571+/-81 microg/g bile for 4-n-HepP) after exposure to an equal dose of AP. Comparison of metabolite concentrations in bile sampled 4 and 16 days after exposure, showed that the levels of 2-MP, 2,4,6-TMP and 4-t-B-2-MP were reduced by 55%, 30% and 45%, respectively whereas 3,5-DMP increased by 25% (not significant). This study suggests that analysis of de-conjugated metabolites in fish bile can be used to monitor AP exposure to fish, due to the relatively high and persistent level of these compounds. However, although HPLC-F is suitable for laboratory exposures, it might not be sufficient selective for field studies.  相似文献   

6.
The influence of fenamidone ((S)-1-anilino-4-methyl-2-methylthio-4-phenylimidazolin-5-one), pyraclostrobin (methyl 2-[1-(4-chlorophenyl)pyrazol-3-yloxymethyl]-N-methoxycarbanilate), indoxacarb (methyl 7-Chloro-2,5-dihydro-2-[[(methoxycarbonyl) [4- (trifluoromethoxy) phenyl] amino] carbonyl] indeno[1,2-e][1,3,4] oxadiazine-4a(3H)-carboxylate), and deltamethrin ([cyano-[3-(phenoxy)phenyl]methyl] 3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate) on spontaneous fermentation carried out by natural yeast grapes microflora, was studied during the wine-making process. Aliquots of pesticide standard solutions were added to the grapes before crushing, to reach a concentration equal or half the maximum residue limit (MRL). Vinifications were performed, with maceration (R), or without maceration (W). During the wine-making process, samples were taken at the beginning (one hour after grapes crushing), at the middle and at the end of the spontaneous fermentation process. At half the MRL concentration, deltamethrin affected Pichia sp. population with a decrease of almost 50 %, while fenamidone decreased Candida sp., Candida stellata at 83, and 36%, respectively. Metschnikowia pulcherrima population decreased in all samples when compared to the control. Experiments at MRL levels showed a strong reduction for all non-Saccharomyces yeast species, when grapes had been treated with pyraclostrobin, fenamidone, and deltamethrine, except for Candida sp. which was found to have been affected only by fenamidone residues. Growth zone inhibition test showed only an in vitro activity of pyraclostrobin over Kloeckera spp., C. stellata, and M. pulcherrima. Microvinification experiments produced wines with no differences concerning S. cerevisiae population as well as production of ethanol and residual sugars. Experiments showed that at the end of the fermentation process pesticides were adsorbed by the lees and grape skins, and no pesticides residue was detectable in wine.  相似文献   

7.
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.  相似文献   

8.
Recent studies have focused on enantiomeric behaviors of chiral organochlorine pesticides (OCPs) in biotic matrix because they provide insights into the biotransformation processes of chiral OCPs. In the present paper, a double in-line column chromatographic method was developed to effectively remove the lipid impurity in different biotic samples for clean-up of OCPs. After an initial Soxhlet extraction of OCPs from the biotic samples by a mixture of acetone and dichloromethane (DCM), dimethyl sulfoxide (DMSO) was directly added to the extract, and low boiling point solvents (acetone and DCM) were then evaporated. OCPs remained in DMSO were eluted via column 1 filled with silicon gel, and subsequently passed through column 2 packed with 15% deactivated florisil. This novel method was characterized by significant time and solvent savings. The recovery rates of α -HCH (hexachlorocyclohexane), β -HCH, γ -HCH and δ -HCH were 78.5 ± 3.1%, 72.4 ± 7.7%, 72 ± 4.0% and 70.0 ± 8.7%, respectively, and 92.5 ± 3.8%, 79.7 ± 6.7% and 83.4 ± 6.5% for 1,1-dichloro-2-(2-chlorophenyl)-2-(4- chlorophenyl) ethylene (o,p′-DDE), 1,1-dichloro-2-(2-chlorophenyl)-2-(4-chloro phenyl)ethane (o,p′-DDD) and 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl) ethane (o,p′-DDT), separately. In addition, the separation efficiencies of the target compounds by both achiral and chiral gas chromatographic columns were satisfactory using the established method. Therefore, the double in-line column chromatography was a useful alternative method for pretreatment of OCPs in different biotic samples.  相似文献   

9.
The yeast Trichosporon mucoides and the filamentous fungus Paecilomyces lilacinus as biphenyl oxidizing organisms are able to oxidize chlorinated biphenyl derivatives. Initial oxidation of derivatives chlorinated at C4 position started at the non-halogenated ring and went on up to ring cleavage. The products formed were mono- and dihydroxylated 4-chlorobiphenyls, muconic acid derivatives 2-hydroxy-4-(4-chlorophenyl)-muconic acid and 2-hydroxy-5-(4-chlorophenyl)-muconic acid as well as the corresponding lactones 4-(4-chlorophenyl)-2-pyrone-6-carboxylic acid and 3-(4-chlorophenyl)-2-pyrone-6-carboxylic acid. Altogether T. mucoides formed 12 products and P. lilacinus accumulated five products. Whereas the rate of the first oxidation step at 4-chlorobiphenyl seems to be diminished by the decreased bioavailability of the compound, no considerable differences were observed between the degradation of 4-chloro-4'-hydroxybiphenyl and 4-hydroxybiphenyl. Twofold chlorinated biphenyl derivatives did not serve as substrates for oxidation by either organism with the exception of 2,2'-dichlorobiphenyl, transformed by the yeast Trichosporon mucoides to two monohydroxylated derivatives. The results show, that soil fungi may contribute to the aerobic degradation of low chlorinated biphenyls accumulating from anaerobic dehalogenation of PCB by bacteria.  相似文献   

10.
Dissipation rates of boscalid [2-chloro-N-(4′ -chlorobiphenyl-2-yl)nicotinamide], pyraclostrobin [methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethyl]-N-methoxycarbanilate], lufenuron [(RS)-1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-(2,6-difluorobenzoyl)urea] and λ-cyhalothrin [(R)-cyano(3-phenoxyphenyl)methyl (1S,3S)-rel-3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropanecarboxylate] in green beans and spring onions under Egyptian field conditions were studied. Field trials were carried out in 2008 in a Blue Nile farm, located at 70 kilometer (km) from Cairo (Egypt). The pesticides were sprayed at the recommended rate and samples were collected at pre-determined intervals. After treatment (T0) the pesticide residues in green beans were 7 times lower than in spring onions. This is due to a different structure of vegetable plant in the two crops. In spring onions, half-life (t1/2) of pyraclostrobin and lufenuron was 3.1 days and 9.8 days respectively. At day 14th (T14) after treatment boscalid residues were below the Maximum Residue Limit (MRL) (0.34 versus 0.5 mg/kg), pyraclostrobin and λ -cyhalothrin residues were not detectable (ND), while lufenuron residues were above the MRL (0.06 versus 0.02 mg/kg). In green beans, at T0, levels of boscalid, lufenuron and λ -cyhalothrin were below the MRL (0.28 versus 2 mg/kg; ND versus 0.02 mg/kg; 0.06 versus 0.2 mg/kg, respectively) while, after 7 days treatment (T7) pyraclostrobin residues were above the MRL (0.03 versus 0.02 mg/kg). However, after 14 days the residue level could go below the MRL (0.02 mg/kg), as observed in spring onions.  相似文献   

11.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

12.
A laboratory experiment was carried out to test the efficiency of a bio-mixture made up of pruning residues at two (PR2) and five (PR5) years of composting and wheat straw (STW) in the biological cleaning of water contaminated by different mixtures of fungicides usually employed in vineyards. The experiment was conducted and reproduced at a scale of 1:100 of operating field conditions. Commercial formulates of penconazole (PC), (RS)-1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole), dimetomorph (DM), (EZ)-4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), azoxystrobin (AZ), (methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate), iprovalicarb (IP), (isopropyl 2-methyl-1-[(RS)-1-p-tolylethyl]carbamoyl-(S)-propylcarbamate), metalaxyl (MX), (methyl N-(methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate), fludioxonil (FL), (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) and cyprodinil (CY), (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine) were mixed in water and discharged into the bio-mixture following the time schedule of the treatments carried out in the grapevine in real field conditions. At each treatment, contaminated water with fungicides was circulated repeatedly through the bio-mixture to enhance the sorption of fungicides. In fact, it retained them between 98–100% with the exception of MX of which it was able to retain only 90.5%. The adsorption/desorption experiment showed that repeated circulation of water, instead of enhancing MX retention, can easily remove about 30% of MX already adsorbed by the bio-mixture. This finding suggests that water contaminated by very mobile pesticides should be discharged at the end of field treatments without re-circulating the water in order to avoid the release of pesticides weakly adsorbed on the bio-mixture.  相似文献   

13.
The sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolid-inimine ) (IMI) and its metabolites imidacloprid-urea (1-[(6-chloro-3-pyridinyl)-methyl]-2-imidazol-idinone) (IU), imidacloprid-guanidine (1-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-1H-imidazol-2-amine) (IG), and imidacloprid-guanidine-olefin (1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75-134) > or = IGO (2.87-72.3) > IMI (0.55-16.9) > IU (0.31-9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2 = 0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non-tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

14.
The bioconcentration and distribution pattern of p,p'-DDT 1,1,1-1trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)-ethane] and its main metabolites (p,p'-DDD [1,1-dichloro-2,2-bis (4-chlorophenyl) ethane] and p,p'-DDE [1,1-dichloro-2,2-bis (4-chlorophenyl) in adipose tissue, liver, brain, kidney, thymus, and testis were examined in young rats after 10 days of intraperitoneal injection of 50 and 100 mg of p,p'-DDT/kg of body weight. Analyses were performed by high-resolution gas chromatography. p,p'-DDT was found to be accumulated in a dose-dependent manner with the highest concentration in adipose tissue. However, in brain, the accumulation of pesticide was low and remained unchanged at the higher dose. This difference may relate to the protective role of the blood-brain barrier, which limits the access of the xenobiotic in the cerebral compartment, and to the differential tissue lipid composition. Although tissues concentration of p,p'-DDE and p,p'-DDD correlated positively to total p,p'-DDT levels, the active role in detoxification of pollutants may explain why p,p'-DDD is more abundant in liver than in the rest of organs. On the contrary, in brain, the concentration of p,p'-DDE is higher than that of p,p'-DDD, suggesting that the metabolism of the parent insecticide proceeds via more than one pathway.  相似文献   

15.
The aim of this paper is to examine the statistical relevance of bird species on the endpoints of avian long–term toxicity studies (eggs laid, eggs set, eggs hatching, embryo survivor, 14-day old survivors and eggshell thickness). Data from 561 animals of three different species (Colinus virginianus, Anas platyrynchos and Coturnix coturnix japonica) tested with five different pesticides were analyzed in this study. The substances considered were: Thiamethoxam (EZ-3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro)amine), Thiacloprid ((Z)-3-(6-chloro-3-pyridylmethyl)-1,3-thiazolidin-2-ylidenecyanamide), Acetamiprid ((E)?N 1-[(6-chloro-3-pyridyl)methyl]-N 2-cyano-N 1-methylacetamidine), Phosmet (O,O-dimethyl S-phthalimidomethyl phosphorodithioate) and Dicofol (2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol). Several general lineal mixed models were conducted to evaluate the factors affecting variables used in long-term reproductive toxicity tests. Test significance was p < 0.01 in all models tested. Model R2 value was high (0.80) for all variables except for eggs laid (R2 = 0.42) for the three species studied. Tukey studentized range test showed significant differences among species and pesticides. For pre-hatching period the differences were significant for eggs laid and eggs set among species. C. japonica showed statistical differences for egg hatching. With respect to embryo survivor and 14 days old survival, significant different were found for C.virginianus and A. platyrynchos, respectively. These results indicate that the selected species have an influence in the endpoints to be used for risk assessment.  相似文献   

16.
ABSTRACT

The aim of this study is to assess the disappearance of boscalid (IUPAC name: 2-chloro-N-[2-(4-chlorophenyl)phenyl]pyridine-3-carboxamide) and pyraclostrobin (IUPAC name: methyl N-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-N-methoxycarbamate) residues in apple fruit, and to verify whether an organic fertilizer enriched with strains of antagonistic microorganisms can reduce pesticide residue levels. Field trials were conducted in a commercial orchard on apples of the Gloster variety, during 21 days after the treatment with Bellis 38 WG and the subsequent application of Zumba Plant formulation containing Bacillus spp., Trichoderma spp. and Glomus spp. In control samples, the decrease rate of boscalid and pyraclostrobin residue levels followed an exponential function, described by formulae Rt = 0.2824e?0.071t and Rt = 0.1176e?0.060t, with the coefficient of determination of r2 = 0.8692 and r2 = 0.9268, respectively. These levels dropped to half (t1/2) of their initial values after 9.8 and 11.5 days, respectively. The treatment with Zumba Plant resulted in a reduction in boscalid and pyraclostrobin residue levels by 52% and 41%, respectively. The results of this study are of importance for horticulture sciences and for producers of apples using plant protection products (PPPs).  相似文献   

17.

The bioconcentration and distribution pattern of p,p′-DDT 1,1,1-1trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)-ethane] and its main metabolites (p,p′-DDD [1,1-dichloro-2,2-bis (4-chlorophenyl) ethane] and p,p′-DDE [1,1-dichloro-2,2-bis (4-chlorophenyl) in adipose tissue, liver, brain, kidney, thymus, and testis were examined in young rats after 10 days of intraperitoneal injection of 50 and 100 mg of p,p′-DDT/kg of body weight. Analyses were performed by high-resolution gas chromatography. p,p′-DDT was found to be accumulated in a dose-dependent manner with the highest concentration in adipose tissue. However, in brain, the accumulation of pesticide was low and remained unchanged at the higher dose. This difference may relate to the protective role of the blood-brain barrier, which limits the access of the xenobiotic in the cerebral compartment, and to the differential tissue lipid composition. Although tissues concentration of p,p′-DDE and p,p′-DDD correlated positively to total p,p′-DDT levels, the active role in detoxification of pollutants may explain why p,p′-DDD is more abundant in liver than in the rest of organs. On the contrary, in brain, the concentration of p,p′-DDE is higher than that of p,p′-DDD, suggesting that the metabolism of the parent insecticide proceeds via more than one pathway.  相似文献   

18.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day?1, less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0–1 cm layer of soils. Only 5–7% of each pesticide was recovered from the 1–2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2–10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5–10% of the applied thiobencarb and between 10–20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

19.
Photolysis of vinclozolin   总被引:1,自引:0,他引:1  
Following photolysis of vinclozolin in methanol five products were detected and identified: 3,5-dichlorophenylisocyanate, 3,5-dichloroaniline, methyl 3,5-dichlorophenylcarbamate, 3-(3-chlorophenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione and methyl (3,5-dichlorophenyl) (2-hydroxy-2-methyl-1-oxo-buten-3-yl) carbamate. The major component identified from photolysis in benzene solution, 3-(3-chlorobiphenyl)-5-methyl-5-vinyl-oxazolidine-2,4-dione, was produced by replacement of one chlorine atom by a solvent molecule.  相似文献   

20.
The white rot fungus Stereum hirsutum was used to degrade methoxychlor [2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethane] in culture and the degraded products were extensively determined. The estrogenic activity of the degraded products of methoxychlor was examined using cell proliferation and pS2 gene expression assays in MCF-7 cells. S. hirsutum showed high resistance to methoxychlor 100 ppm, and the mycelial growth was fully completed within 8 days of incubation at 30 degrees C. Methoxychlor in liquid culture medium was gradually converted into 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethane, 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethylene, 2-chloro-1,1-bis(4-methoxyphenyl) ethane, 2-chloro-1,1-bis(4-methoxyphenyl) ethylene, and 1,1-bis(4-methoxyphenyl)ethylene, indicating that methoxychlor is dominantly degraded by dechlorination and dehydrogenation. MCF-7 cells were demonstrated to proliferate actively at the 10-5 M concentration of methoxychlor. However, cell proliferation was significantly inhibited by the incubation with methoxychlor culture media containing S. hirsutum. In addition, the expression level of pS2 mRNA was increased at the concentration (10-5 M) of methoxychlor. The reductive effect of S. hirsutum for methoxychlor was clear but not significant as in the proliferation assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号