首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nitrogen deposition in Finland was investigated on the basis of the nitrogen concentration in the forest moss, Hylocomium splendens, collected during heavy metal moss surveys carried out in 1990, 1995, 2000, and 2005/06. Significant regional differences were found in the nitrogen concentrations in mosses. The concentrations were the highest in the southern part of the country in all the surveys, with a decreasing trend on moving northwards. The mean concentrations in the surveys were 1.07%, 1.00%, 0.89% and 0.92%. In general, the concentrations in mosses reflected nitrogen deposition at the level of the whole country. However, they did not correlate very well with the modelled nitrogen deposition because of the high local variation in the nitrogen concentration in H. splendens. One reason for the high variation was the effect of the structure of the tree stand on nitrogen concentrations in H. splendens.  相似文献   

2.
This paper presents essential features of biomonitoring work carried out in the author's laboratory during more than 25 years using various analytical techniques for the determination of over 50 elements. A substantial part of this work concerns large-scale deposition surveys in Norway using the moss Hylocomium splendens, where five nationwide surveys have been carried out since 1977. Considerable efforts have also been spent on intercalibration of different species of mosses and transformation of concentrations in moss to absolute deposition rates. Other significant activities include establishment of recommended values for moss reference samples, source apportionment of lead in mosses by stable isotope ratios and monitoring of local metal deposition around factories. Experience from this work has facilitated a critical evaluation of the contribution from sources other than atmospheric deposition to the elemental composition of the moss, as well as factors leading to depletion of elements in the moss. Recent work indicates that mosses may also be suitable for the monitoring of persistent halogenated organic pollutants and 137Cs deposition.  相似文献   

3.
The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni.  相似文献   

4.
In this study, the indicative value of mosses as biomonitors of atmospheric nitrogen (N) depositions and air concentrations on the one hand and site-specific and regional factors which explain best the total N concentration in mosses on the other hand were investigated for the first time at a European scale using correlation analyses. The analyses included data from mosses collected from 2781 sites across Europe within the framework of the European moss survey 2005/6, which was coordinated by the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP Vegetation). Modelled atmospheric N deposition and air concentration data were calculated using the Unified EMEP Model of the European Monitoring and Evaluation Programme (EMEP) of the Convention on Long-range Transboundary Air Pollution (CLRTAP). The modelled deposition and concentration data encompass various N compounds. In order to assess the correlations between moss tissue total N concentrations and the chosen predictors, Spearman rank correlation analysis and Classification and Regression Trees (CART) were applied. The Spearman rank correlation analysis showed that the total N concentration in mosses and modelled N depositions and air concentrations are significantly correlated (0.53 ≤ rs ≤ 0.68, p < 0.001). Correlations with other predictors were lower than 0.55. The CART analysis indicated that the variation in the total N concentration in mosses was best explained by the variation in NH4+ concentrations in air, followed by NO2 concentrations in air, sampled moss species and total dry N deposition. The total N concentrations in mosses mirror land use-related atmospheric concentrations and depositions of N across Europe. In addition to already proven associations to measured N deposition on a local scale the study at hand gives a scientific prove on the association of N concentration in mosses and modelled deposition at the European scale.  相似文献   

5.
Native and transplanted mosses of the species Scleropodium purum were used to study the possible adaptation of the former to atmospheric contamination. A total of seven assays were carried out with transplanted moss exposed at sites around a thermal power station for 28 and 56 days, and native moss collected from the sites at the same time. Irrigated moss bags were used in order to maintain stable conditions throughout the exposure periods. Determinations were made of levels of Co, Cr, Cu, K, Ni, Pb, Se and Zn in the mosses. No significant differences were found, throughout the exposure time studied, in metal bioconcentration in the native mosses, whereas in the transplanted mosses the differences were significant for all metals except Ni. The degree of bioconcentration was higher at the start of the exposure period and later became more stable. The high levels of Se found in the native mosses compared to the transplanted mosses indicates a possible mechanism of adaptation by detoxification.  相似文献   

6.
The main sources contributing to heavy metal content in mosses in Lithuania were examined by a comparison of heavy metal concentrations in moss and corresponding deposition levels calculated from bulk deposition analysis. Bulk deposition was collected in open areas as well as under the canopy of trees. Uptake efficiencies in moss were calculated for Cd, Cr, Cu, Fe, Mn, Ni, V and Zn. All elements in moss except Pb and Cd appeared to be more or less influenced by sources other than air pollution. The general order of this influence on the heavy metal content in moss was observed as follows: Ni < V < Cr < Zn < Fe < Mn. The contents of Mn and Zn in moss were greatly influenced by leaching from the canopy while Pb was the only element which showed a net metal retention by the canopy. Concentrations of Fe and Cr in moss were dominating due to contribution from soil dust.  相似文献   

7.
In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found.  相似文献   

8.

Background, aim and scope  

The European Heavy Metals in Mosses Surveys (UNECE-ICP Vegetation) is a programme performed every 5 years since 1990 in at least 21 European countries. The moss surveys aim at uncovering the spatiotemporal patterns of metal and nitrogen bioaccumulation in mosses. In France, the moss survey was conducted for the third time in 2006. Five hundred thirty-six monitoring sites were sampled across the whole French territory. The aim of the presented study is to give an integrative picture of the metal bioaccumulation for the entire French territory without geographical gaps. Furthermore, confounding factors of the metal bioaccumulation in mosses should be investigated.  相似文献   

9.
Monitoring of heavy metal deposition in Northern Italy by moss analysis   总被引:10,自引:0,他引:10  
A survey of heavy metal deposition in the mountainous territories of Northern Italy was carried out in 1995-96. Moss samples (mainly Hylocomium splendens) were collected in a dense network of sites (about 3.2 sites/1000 km(2)) and the data of metal concentrations in moss tissues were statistically correlated with environmental and climatic factors, as well as with bulk deposition of elements and elemental concentrations in the soil. Three main geographic patterns of metal concentration in mosses could be defined: (1) Fe, Ni, and Cr, all derived both by soil particulates and anthropogenic emissions connected with ferrous metal manufacturing, were mostly concentrated in Northwestern Italy; (2) Cu and Zn, as typical multi-source elements, showed rather high concentrations with little ranges of variation over the whole area and small peaks reflecting local source points; (3) Cd and Pb reflected long-distance transport and showed highest concentrations in the regions with highest precipitation, especially in the Eastern Alps.  相似文献   

10.
In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution.  相似文献   

11.
Response of mosses to the heavy metal deposition in Poland--an overview   总被引:3,自引:0,他引:3  
Concentrations of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) in Pleurozium schreberi (Brid.) Mitt., a common moss species, were used to indicate relative levels of atmospheric deposition in Poland in the years 1975-1998. Spatial and temporal differences in the heavy metal concentrations in mosses were found. The highest concentration of heavy metals was recorded in the moss samples from the southern, most industrialised part of the country, and the lowest from north-eastern Poland. A significant decrease of heavy metals over 20 years (1975-1998) was found.  相似文献   

12.
In order to assess whether nitrogen (N) loads in mosses reflect different land uses, 143 sites in North Rhine-Westphalia, the Weser-Ems Region and the Euro Region Nissa were sampled between 2000 and 2005. The data were analysed statistically with available surface information on land use and forest conditions. N bioaccumulation in mosses in the Weser-Ems Region with high densities of agricultural land use and livestock exceeded the concentrations in the more industrialised Euro Region Nissa. In all three study areas agricultural and livestock spatial densities were found to be positively correlated with N bioaccumulation in mosses. In North Rhine-Westphalia, the N concentrations in mosses was also moderately correlated with N concentrations in leaves and needles of forest trees. The moss method proved useful to assess the spatial patterns of N bioaccumulation due to land use.  相似文献   

13.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Michaela Meyer  Werner Wosniok  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Alejo Carballeira  Helena Danielsson  Ludwig de Temmermann  Barbara Godzik  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Antti-Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Javier Martínez-Abaigar  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Environmental science and pollution research international》2016,23(11):10457-10476
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.  相似文献   

14.
A biomonitoring survey using the moss species [Hypnum cupressiforme Hedw. and Scelopodium touretii (Brid.) L. Kock] was performed in the whole territory of Portugal, in order to evaluate the atmospheric deposition of the following elements: Cd. Cr, Cu, Fe, Mn, Ni, Pb and Zn. The concentrations of the same elements were also obtained in two types of soil samples, collected under the moss and in nearby plots without any plant coverage, and relationships between moss and soil concentrations was investigated using the multivariate statistical method of Co-inertia Analysis. Also, relationships between concentrations in moss and several anthropogenic, geologic, pedologic and environmental parameters were screened using the same method of Co-inertia Analysis. Higher concentrations of Cu, Pb and Zn were found in areas of higher population density, with higher gasoline consumption, while higher values of Fe and Cr occur in the driest region, with lower plant coverage, indicating strong contamination by resuspended soil particles. Results also show good agreement between moss and soil contents, even for elements with high contribution of anthropogenic sources. The spatial pattern in Portugal of element contents in mosses were also detected and discussed in relation to local contamination sources.  相似文献   

15.
An equation to estimate Hg concentrations of <4 μg/L in groundwaters of a polluted area in NE Italy was set out by using transplants of the aquatic moss Rhynchostegium riparioides as trace element bioaccumulators. The equation is derived from a previous mathematical model which was implemented under laboratory conditions. The work aimed at (1) checking the compliance of the uptake kinetics with the model, (2) improving/adapting the model for groundwater monitoring, (3) comparing the performances of two populations of moss collected from different sites, and (4) assessing the environmental impact of Hg contamination on a small river. The main factors affecting Hg uptake in the field were—as expected—water concentration and time of exposure, even though the uptake kinetics in the field were slightly different from those which were previously observed in the lab, since the redox environmental conditions influence the solubility of cationic Fe, which is a negative competitor of Hg2+. The equation was improved by including the variable ‘dissolved oxygen concentration’. A numerical parameter depending on the moss collection site was also provided, since the differences in uptake efficiency were observed between the two populations tested. Predicted Hg concentrations well fitted the values measured in situ (approximately ±50 %), while a notable underestimation was observed when the equation was used to predict Hg concentration in a neighbouring river (?96 %), probably due to the organic pollution which hampers metal uptake by mosses.  相似文献   

16.
Active biomonitoring of polycyclic aromatic hydrocarbons by means of mosses   总被引:1,自引:0,他引:1  
Spherical bags, packed with 20 g of peat moss (Sphagnum spp.), were exposed to ambient air at a distance of 1 km from a plant manufacturing electrodes for the production of aluminium, near Rotterdam, The Netherlands. In these bags, the concentrations of six polycyclic aromatic hydrocarbons were determined, and compared with the concentrations in moss bags that had been exposed in relatively clean areas. From the results it can be concluded that, in addition to their useful application for biomonitoring of heavy metals, mosses can be applied in active biomonitoring of polycyclic aromatic hydrocarbons in ambient air.  相似文献   

17.
Protein expression was assessed in samples of Pseudoscleropodium purum cross-transplanted between one unpolluted (UNP) and two polluted (POLL) sites. Firstly, the level of expression (LE) of 17 proteins differed between native mosses from both types of sites, but differences were only maintained throughout the experiment for 5 of them. The LE of these five proteins changed over time in mosses transplanted from UNP to POLL and vice versa, becoming similar to that in autotransplants. However, these changes occurred slower than changes in the heavy metal concentrations measured in the same samples, and therefore they were not related to atmospheric pollution. Although the proteins identified were associated with moss metabolism, the expected growth reduction in samples autotransplanted within POLL (as a result of the down-regulation of photosynthesis-related proteins), did not occur. This supports the hypothesis that mosses growing in polluted areas adapt to heavy metal pollution and are able to reduce/overcome their toxic effects (i.e., reduced growth). Nevertheless, further specific research must be carried out to identify the proteins involved in this type of response, as lack of information on the bryophyte genome precludes us from reaching further conclusions.  相似文献   

18.
The use of mosses as environmental metal pollution indicators   总被引:13,自引:0,他引:13  
The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.  相似文献   

19.
Highly variable total concentrations of 15 elements have been found in five species of epigeic mosses growing in remote areas of Italy and in northern Victoria Land (continental Antarctica). It is very likely that soil particles entrapped in the mosses cause these high element concentration differences, thereby leading to inexact interpretations of baseline concentrations and of element distribution in different parts of mosses. A simple procedure for estimating more plausible background values that consists of subtracting the substratum contribution from raw concentrations of elements in mosses is reported. The normalization of total concentrations to the regional soil composition is also emphasized, in order to point out other possible metal sources.  相似文献   

20.
Samples of the moss Hypnum cupressiforme and the epiphytic lichen Parmelia, caperata were collected during the summer of 1999 in an area (Colline Metallifere, central Italy) intensively exploited in the past for metals (Cu, Fe, Pb, Zn) and currently for geothermal resources. Lichens were more sensitive than mosses to emissions of S compounds near geothermal fields and abandoned sulphide ore smelting plants. Comparison of elemental compositions of the two cryptogamic species from the same sampling sites showed significantly higher concentrations of lithophile elements (Al, Cr, Fe, Mn, Ni, Ti) in the moss and atmophile elements (Hg, Cd. Pb, Cu, V, Zn) in the lichen. Patterns of bioaccumulation of elements throughout the study area were quite similar for widespread pollutants such as S, B, As, Zn, Cr and Ni, but the lichen and the moss showed different distribution patterns of Hg, Cd and other elements subject to long-range atmospheric transport. These results are due to differences in the morphology and ecophysiology of mosses and lichens and indicate that these organisms cannot be used interchangeably as biomonitors of metals in areas with mineral deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号