首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pelagic dispersal of larvae in sessile marine invertebrates could in principle lead to a homogeneous gene pool over vast distances, yet there is increasing evidence of surprisingly high levels of genetic differentiation on small spatial scale. To evaluate whether larval dispersal is spatially limited and correlated with distance, we conducted a study on the widely distributed, viviparous reef coral Seriatopora hystrix from the Red Sea where we investigated ten populations separated between ~0.150 km and ~610 km. We addressed these questions with newly developed, highly variable microsatellite markers. We detected moderate genetic differentiation among populations based on both F ST and R ST (0.089 vs. 0.136, respectively) as well as considerable heterozygote deficits. Mantel tests revealed isolation by distance effects on a small geographic scale (≤20 km), indicating limited dispersal of larvae. Our data did not reveal any evidence against strictly sexual reproduction among the studied populations.  相似文献   

2.
Allozyme and restriction enzyme analysis of mtDNA was used to study variation in samples from British populations of the marine limpet Patella vulgata in two regions. South Wales and Northeast England. Allozyme analysis revealed significant differences in allele frequencies among samples. However F ST (population differentiation) values were no higher between than within regions, indicating that genetic heterogeneity was localised and not related to geographic separation. For mtDNA, samples from South Wales exhibited higher haplotype diversity values than samples from Northeast England. In addition there were substantial differences in the haplotype distribution between regions. The value of , the haploid analogoue of F ST , was low within regions (=0.09) but high between regions (=0.44). The estimated difference in migration rate for allozymes and mtDNA exceed the neutral expectation, unless it is assumed that there are influential differences in the magnitude of female and male gametic dispersal.  相似文献   

3.
Despite high potential for dispersal, the purple sea urchin Strongylocentrotus purpuratus was found to have significant genetic subdivision among locations. Ten geographic locations along the coast of California and Baja California were sampled between 1994 and 1995. Samples from some locations included both adult and recruit urchins. Allozyme analyses revealed a genetic mosaic, where differentiation over short geographic distances could exceed differentiation over much larger distances. Significant allozyme differentiation was found among subpopulations of adults (standardized variance, F ST =0.033), among subpopulations of recruits (F ST =0.037), and between adults and recruits from the same location. DNA-sequence data for the mitochondrial cytochrome oxidase I gene also showed significant heterogeneity among locations, with a mild break in haplotype frequencies observed 300 km south of Point Conception. California. Repeated sampling over time is necessary to determine whether these patterns of differentiation are stable and to begin to understand what forces produce them.  相似文献   

4.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
K. E. Parsons 《Marine Biology》1996,126(3):403-414
The intertidal gastropods Bembicium vittatum and Austrocochlea constricta, which have direct and planktonic larval development, respectively, occur sympatrically at sites across a number of islands at the Houtman Abrolhos archipelago and two harbours at Albany in Western Australia. Their distribution provide an opportunity to examine the effect of dispersal ability on levels of genetic subdivision at a number of spatial scales. F ST (standardised variance in allelic frequencies) values in the range 0.361 to 0.396, determined from allozyme frequencies at 12 to 13 polymorphic loci, confirm isolation of Abrolhos and Albany populations, which are separated by 900 km of coastline, in both species. Within the Abrolhos and Albany, levels of subdivision in B. vittatum were high, but similar, as indicated by F ST values of 0.091 and 0.090, respectively. In A. constricta, a mean value of 0.160 at the Abrolhos suggests severe restrictions to gene flow, while 0.021 at Albany indicates much stronger connections among populations. F ST values at the Abrolhos support previous suggestions that this archipelago favours genetic subdivision in both direct and planktonic-developing species. The Albany harbours favoured subdivision only in B. vittatum, the low values of F ST in A. constricta being attributed to strong mixing between the harbours, thus facilitating gene flow via planktonic larvae. The isolation of A. constricta populations at the Abrolhos can be explained in terms of highly localised recruitment, the result of limited water movement in complex intertidal habitats. The study illustrates the value of examining sympatric direct and planktonic developers in assessing the role of larval dispersal in patterns of genetic subdivision, and concludes that planktonic larvae may not promote gene flow over broad or even some fine spatial scales.  相似文献   

6.
Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global θ ST (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise θ ST comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.  相似文献   

7.
Abstract: The Coral Triangle is the global center of marine biodiversity; however, its coral reefs are critically threatened. Because of the bipartite life history of many marine species with sedentary adults and dispersive pelagic larvae, designing effective marine protected areas requires an understanding of patterns of larval dispersal and connectivity among geographically discrete populations. We used mtDNA sequence data to examine patterns of genetic connectivity in the boring giant clam (Tridacna crocea) in an effort to guide conservation efforts within the Coral Triangle. We collected an approximately 485 base pair fragment of mtDNA cytochrome c oxidase 1 (CO1) from 414 individuals at 26 sites across Indonesia. Genetic structure was strong between regions (φST=0.549, p < 0.00001) with 3 strongly supported clades: one restricted to western Sumatra, another distributed across central Indonesia, and a third limited to eastern Indonesia and Papua. Even within the single largest clade, small but significant genetic structure was documented (φST=0.069, p < 0.00001), which indicates limited gene flow within and among phylogeographic regions. Significant patterns of isolation by distance indicated an average dispersal distance of only 25–50 km, which is far below dispersal predictions of 406–708 km derived from estimates of passive dispersal over 10 days via surface currents. The strong regional genetic structure we found indicates potent limits to genetic and demographic connectivity for this species throughout the Coral Triangle and provides a regional context for conservation planning. The recovery of 3 distinct evolutionarily significant units within a well‐studied taxonomic group suggests that biodiversity in this region may be significantly underestimated and that Tridacna taxa may be more endangered than currently recognized.  相似文献   

8.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

9.
Sponges display a variety of reproductive strategies that have the potential to influence population genetic structure. Histological examination of ten reproductive individuals of the Western Australian sponge Haliclona sp. showed that this species broods embryonic larvae that are potentially limited in dispersal capabilities. Because sponges have the potential to propagate in a number of modes, allozyme electrophoresis was used to assess the relative importance of asexual and sexual reproduction to recruitment, and to quantify genetic subdivision over different spatial scales. Tissue samples from 227 sponges were collected from reefs within two areas 400 km apart: Hamelin Bay and Rottnest Island. Contrary to expectations for highly clonal populations, genotypic diversity within sites was high, no linkage disequilibrium was found, and there was no evidence of genotypic clustering within reefs. There was no genetic evidence that asexual reproduction is important for the maintenance of populations. Genetic comparisons were consistent with mixing of sexually produced recruits within reefs, on a scale up to a few hundred metres, but significant genetic subdivision between reefs (FST=0.069 at Hamelin Bay, 0.130 at Rottnest Island) indicated that water gaps of several hundred metres are effective at preventing dispersal. Subdivision between the two areas, separated by 400 km, was moderately greater (FST=0.142) than within, but the same alleles were predominant in the two areas. These genetic patterns are consistent with limited dispersal capabilities of brooded larvae.Communicated by G.F. Humphrey, Sydney  相似文献   

10.
The tarpon (Megalops atlanticus) is a highly valued game fish and occasional food fish in the eastern and western Atlantic Ocean. Tarpon have a high capacity for dispersal, but some regional biological differences have been reported. In this study we used two molecular genetic techniques—protein electrophoresis of nuclear DNA loci, and restriction fragment length polymorphism analysis of the mitochondrial DNA (mtDNA)—to assess this species population genetic structure in the eastern (coastal waters off Gabon and Sierra Leone, Africa) and western (coastal waters off Florida, Caribbean Sea) Atlantic Ocean north of the equator. Genetic differentiation was observed between tarpon from Africa and tarpon from the western Atlantic Ocean. A unique allele and haplotype, significant differences in allozyme allele and mtDNA haplotype frequencies between the African and western Atlantic samples, and significant FST analyses suggest that levels of gene flow between tarpon from these two regions is low. Among the western Atlantic Ocean collections, genetic diversity values and allele and haplotype frequencies were similar. AMOVA analyses also showed a degree of genetic relatedness among most of the western Atlantic Ocean collections: however, some significant population structuring was detected in the allozyme data. A regional jackknifed FST analysis indicated the distinction of the Costa Rica population from the other western Atlantic populations and, in pairwise analyses, FST values tended to be higher (i.e., genetic relatedness was lower) when the Costa Rican sample was paired with any of the other western Atlantic samples. These data suggest that Costa Rican tarpon could be partially isolated from other western Atlantic tarpon populations. Ultimately, international cooperation will be essential in the management of this species in both the eastern and western Atlantic Ocean.Communicated by P.W. Sammarco, Chauvin  相似文献   

11.
Female greater horseshoe bats (Rhinolophus ferrumequinum) exhibit strong natal philopatry to their maternity roost over many years, leading to the aggregation of matrilineal kin. Maternity colonies may, therefore, be expected to comprise highly related individuals, and, as such, provide conditions suitable for the evolution of kin-selected behaviours. To test these predictions, we examined relatedness and behaviour among matrilineal kin within a colony in south-west Britain. Genetic analysis of 15 matrilines, identified from microsatellite genotyping and long-term ringing surveys, revealed average relatedness levels of 0.17 to 0.64. In contrast, background relatedness among colony females approximated to zero (0.03). These results suggest that inclusive fitness benefits may only be accrued through discriminate cooperation within matrilines, and not at the wider colony level. To examine whether the potential for such benefits is realised through kin- biased cooperation during foraging, females from two matrilines were radio-tracked simultaneously over 3 years. Pairwise home-range overlap correlated significantly with Hamilton's relatedness coefficient. The greatest spatial associations were observed between females and their adult daughters, which shared both foraging grounds and night roosts, sometimes over several years. Tagged females, however, generally foraged and roosted alone, suggesting that kin-biased spatial association probably does not result from either information-transfer or cooperative territorial defence. Such patterns may instead result from a mechanism of maternal inheritance of preferred foraging and roosting sites.  相似文献   

12.
J. E. Duffy 《Marine Biology》1993,116(3):459-470
The spatial context in which host races of parasitic animals originate is a central issue in the controversial theory of sympatric speciation. Sponge-dwelling shrimps in the genus Synalpheus provide a good system for evaluating the possibility of resource-associated divergence in sympatry. I used allozyme electrophoresis to assess the genetic population structure of two Caribbean Synalpheus species sampled in 1988 to 1990 at a hierarchy of spatial scales. S. brooksi Coutière is a host-generalist, using several sponge species in an area, and develops directly, with no planktonic larval stage. G-tests and estimates of F ST revealed highly structured populations in this species, with significant differentiation among samples from individual reefs within a region, and strong divergence among regions (Panama, Belize, Florida). Moreover, samples of S. brooksi taken from the two sponges Spheciospongia vesparium (Lamarck) and Agelas clathrodes (Schmidt) in Panama, and separated by 3 km, showed significant differentiation at both of the loci that were polymorphic in these populations. Genetic distances between these host-associated populations averaged >60% greater than distances between samples from the same host species and were comparable to, or greater tha, those for some inter-regional comparisons. These genetic data corroborate a previous finding of demographic differences between the same populations. The second species, S. pectiniger Coutière, occurs only in Spheciospongia vesparium, and produces swimming larvae. Although allele frequencies in this species differed significantly among the three regions, S. pectiniger showed no differentiation within regions, and significantly lower differentiation (F ST) among regions than its direct-developing congener. These data suggest that genetic population structure in these two commensal crustaceans is related to dispersal potential, and that restricted dispersal may allow the divergence of host-associated populations on a local scale.  相似文献   

13.
14.
Ground-dwelling sciurids exhibit a continuum of sociality and several models predict levels of sociality within this taxon. Models of ground squirrel sociality predict round-tailed ground squirrels (Xerospermophilus tereticaudus) to be solitary; however, previous behavioral studies suggest round-tailed ground squirrels have a matrilineal social structure. To resolve this discrepancy, we combined behavioral observations with genetic analyses of population structure. We assessed levels of agonistic and amicable behaviors combined with fine-scale population genetic structure of round-tailed ground squirrels in a multi-year study in AZ. Only 45 agonistic and 40 amicable interactions were observed between adults in over 137 h of observations. Overall rates of agonistic or amicable interactions between adults were low (≤0.69/h), with no relationship between relatedness of individuals and rates of either amicable or agonistic interactions. Interactions between juvenile littermates were predominantly amicable. Population substructure was not evident with Bayesian analyses, global or pairwise F ST values; average relatedness among females was not different from males. However, in 2006, the year after a population reduction through targeted animal elimination, a population bottleneck was detected within at least five of seven loci. Contrary to previous behavioral studies, this population of round-tailed ground squirrels, although aggregated spatially, did not exhibit high levels of social behavior nor subpopulation genetic structure. Analyses of the genetic relationships and sociality along a continuum, particularly within aggregates of individuals, may lead to insights into the origin and maintenance of social behaviors by elucidating the mechanisms by which aggregates with intermediate social levels are formed and maintained.  相似文献   

15.
Abstract: High‐latitude coral reefs (HLRs) are potentially vulnerable marine ecosystems facing well‐documented threats to tropical reefs and exposure to suboptimal temperatures and insolation. In addition, because of their geographic isolation, HLRs may have poor or erratic larval connections to tropical reefs and a reduced genetic diversity and capacity to respond to environmental change. On Australia's east coast, a system of marine protected areas (MPAs) has been established with the aim of conserving HLRs in part by providing sources of colonizing larvae. To examine the effectiveness of existing MPAs as networks for dispersal, we compared genetic diversity within and among the HLRs in MPAs and between these HLRs and tropical reefs on the southern Great Barrier Reef (GBR). The 2 coral species best represented on Australian HLRs (the brooding Pocillopora damicornis and the broadcast‐spawning Goniastrea australensis) exhibited sharply contrasting patterns of diversity and connectedness. For P. damicornis, the 8‐locus genetic and genotypic diversity declined dramatically with increasing latitude (Na= 3.6–1.2, He= 0.3–0.03, Ng:N = 0.87–0.06), although population structure was consistent with recruitment derived largely from sexual reproduction (Go:Ge= 1.28–0.55). Genetic differentiation was high among the HLRs (FST[SD]= 0.32 [0.08], p < 0.05) and between the GBR and the HLRs (FST= 0.24 [0.06], p < 0.05), which indicates these temperate populations are effectively closed. In contrast for G. australensis, 9‐locus genetic diversity was more consistent across reefs (Na= 4.2–3.9, He= 0.3–0.26, Ng:N = 1–0.61), and there was no differentiation among regions (FST= 0.00 [0.004], p > 0.05), which implies the HLRs and the southern GBR are strongly interconnected. Our results demonstrate that although the current MPAs appear to capture most of the genetic diversity present within the HLR systems for these 2 species, their sharply contrasting patterns of connectivity indicate some taxa, such as P. damicornis, will be more vulnerable than others, and this disparity will provide challenges for future management.  相似文献   

16.
Pelagic larvae are highly important for maintaining the gene flow among populations of sessile marine invertebrates. Colonial ascidians consist, exclusively, of brooding species, with lecithotrophic larvae that have a limited dispersal. As a result, there is a marked differentiation among populations. In this work, we used allozyme electrophoresis to access the genetic variation in four populations of Symplegma rubra, a colonial ascidian frequently found in the intertidal zone of Southeastern Brazilian coast. High variability was found at three of the four sites sampled, the exception being Praia Grande in the State of Rio de Janeiro. At this site, there was a great preponderance of clones, which possibly reflected the enclosed nature of the location and its low water circulation that reduce the dispersal capabilities of these animals. S. rubra did not conform to expectations for random mating (Hardy–Weinberg equilibrium): there was a deficit of heterozygotes that was more related to the small population size than to inbreeding processes, since F is analysis per locus revealed a deficiency of heterozygotes at only one locus—MDH*. The greatest variation in allele frequency was found for GPI-2*. Analyses of genetic variability revealed moderate differentiation among the populations (F ST=0.051), which was unexpected for a species with a low dispersal capability. Rafting, a frequently underestimated means of dispersal, may be the main mode of gene flow in this species over large areas, since colonies of S. rubra are frequently seen growing on drift material and there is no evidence that the larva survive for a long time in the plankton.  相似文献   

17.
The objective of our study was to investigate the spatial distribution and genetic structure of a solitary primate at the microgeographical scale of adjacent local populations. We obtained spatial data and tissue samples for mtDNA analysis from 205 gray mouse lemurs (Microcebus murinus) captured along transects and within 3 grid systems within a 12.3 km2 area in Kirindy Forest, western Madagascar. Our capture data revealed that, even though the forest was continuous, gray mouse lemurs were not evenly distributed, and that daily and maximum dispersal distances were significantly greater in males. The frequency distribution of 22 mtDNA D-loop haplotypes was highly skewed. Nine haplotypes were unique to males, indicating male-mediated gene flow from surrounding areas. The geographic distribution of haplotypes revealed that males were also more dispersed than females. Females with the same haplotype showed a tendency towards spatial aggregation, and the correlation between genetic and geographic distances was higher in females. In several areas of the forest, however, spatially clustered females were not of the same haplotype, and females were not always found in clusters. Hence, in contrast to suggestions from previous studies, matrilineal clustering is not the only way females are socially organized. In addition, our study revealed heterogeneity and patterns in population structure that were not evident at smaller spatial scales, some of which may be relevant for designing conservation strategies.Communicated by C. Nunn  相似文献   

18.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

19.
Limited dispersal should result in genetic differences between populations proportional to geographic distances of separation. This association between gene flow and distance can be disrupted by (1) continuing genetic exchange among distant populations, (2) historical changes in gene flow, and (3) physical barriers or corridors to dispersal. The movements of larvae are thought to determine dispersal capability in benthic marine invertebrates. The solitary scleractinian Balanophyllia elegans Verrill possesses crawling larvae capable of only limited dispersal. Paradoxically, however, inferred levels of gene flow between pairs of localities spread over much of the 4000 km range of B. elegans exhibited a weaker relationship with geographical separation than that expected for a linear array of populations in which all genetic exchange takes place between adjacent populations. In this paper, I examined the pattern of gene flow (inferred from the frequencies of eight polymorphic allozyme loci) in B. elegans at a smaller (1 to 50 km) spatial scale to determine (1) whether gene flow at this spatial scale conformed to the expectations of the stepping-stone model, and (2) whether continuing long-distance gene flow or historical changes in gene flow were responsible for the weak relationship between gene flow and distance observed previously at the rangewide spatial scale. Between May and August 1992, I collected 75 adults from each of 18 localities along the coast of Sonoma County, California, USA. These populations of B. elegans were significantly subdivided both among localities separated by 1 to 50 km (F LT =0.053, Se=0.0075) and among patches separated by 4 to 8 m (F PL=0.026, SE=0.0023). The observed slope and correlation (r 2=0.54) between inferred levels of gene flow and the geographic distance at the 1 to 50 km spatial scale conformed to equilibrium expectations (obtained by simulation) for a linear stepping-stone model, although those from the rangewide spatial scale did not. This implies that the mechanisms conferring patterns of inferred genetic differentiation between localities in B. elegans differ fundamentally with spatial scale. At a scale of 1 to 50 km, continuing gene flow and drift have equilibrated and the process of isolation-bydistance may facilitate local adaptive change. At a broader spatial scale, historical changes in gene flow, perhaps affected by late Pleistocene climatic fluctuations, disrupt the equilibration of gene flow and genetic drift, so that genetic differentiation may not increase continuously with separation between populations.  相似文献   

20.
Variations in the relative contributions of gene flow and spatial and temporal variation in recruitment are considered the major determinants of population genetic structure in marine organisms. Such variation can be assessed through repeated measures of the genetic structure of a species over time. To test the relative importance of these two phenomena, temporal variation in genetic composition was measured in the limpet Cellana grata, among four annual cohorts over 10 years at four rocky shores in Hong Kong. A total of 408 limpets, comprising individuals from 1998, 1999, 2006 and 2007 cohorts were screened for genetic variation using five microsatellite loci. Minor but significant genetic differentiation was detected among samples from the 1998/1999 collection (F ST = 0.0023), but there was no significant differentiation among the 2006/2007 collection (F ST = 0.0008). Partitioning of genetic variation among shores was also significant in 1998/1999 but not in the 2006/2007 collection, although there was no correlation between genetic and geographic distances. There was no significant difference between collections made in 1998/1999 and 2006/2007. This lack of clear structure implies a high level of gene flow, but differentiation with time may be the result of stochastic recruitment variation among shores. Estimates of effective population size were not high (599, 95% C.L. 352–11397), suggesting the potential susceptibility of the populations to genetic drift, although a significant bottleneck effect was not detected. These findings indicate that genetic structuring between populations of C. grata in space and time may result from spatio-temporal variation in recruitment, but the potential development of biologically significant differentiation is suppressed by a lack of consistency in recruitment variability and high connectivity among shores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号