首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高盐度废水处理研究进展   总被引:17,自引:0,他引:17  
高盐度废水中由于含有大量的溶解性物质,无机盐类在微生物生长过程中起着促进酶反应、维持膜平衡和调节渗透压的重要作用,但盐浓度过高,离子强度大,会造成质壁分离、细胞失活,使一般微生物难以在其中生长、繁殖,所以传统的生物法难以处理高盐度废水.文章就高盐度废水的物理、化学及生物处理研究进行综述.重点针对生物法中的耐盐微生物的研究现状进行探讨,分别阐述了耐盐的机理研究及耐盐菌在高盐废水中的研究,并提出了其在高盐废水应用中的展望.  相似文献   

2.
3.
钟声  唐松林  范俊 《环境科技》2007,20(Z2):46-47
高盐度废水因其限制了微生物的生长而成为难处理的废水之一.利用生活污水中碳源,合理安排微电解、电解、厌氧、好氧以及生物处理等综合技术,使原COD质量浓度为21 000 mg·L-1左右的废水,最终达到≤121 mg·L-1的良好效果.为高盐度,高COD废水的处理提供了借鉴.  相似文献   

4.
利用聚丁二酰亚胺对聚氨酯泡沫体进行化学改性处理,研究改性载体固定化微生物处理高氨氮模拟废水的效果。结果表明:当聚氨酯单元与聚丁二酰亚胺单元摩尔比为10∶1时,对泡沫进行改性后聚氨酯泡沫载体亲水性能良好,且具有较高的微生物负载量。改性后泡沫体上具有化学活性的官能团增加,有利于通过载体结合法固定化微生物细胞;,改性后的聚氨酯泡沫体作为微生物固定化载体用于模拟废水处理时,对主要污染指标呈现良好的污染物去除效果。  相似文献   

5.
魏思宇  周荣丰 《环境科技》2006,19(Z1):93-96
高盐度废水因为其限制了微生物的生长而成为难处理的废水之一.在此,简单介绍了目前运用于高盐度废水处理的一些方法,如传统活性污泥法、SBR法、厌氧处理法、电化学法,并分析了其方法的优缺点.  相似文献   

6.
氨氮是生活中较为常见的水体污染物,不仅对环境遭成巨大的破坏,其中蕴含的化学物质还会毒害动植物,严重影响到人们的生活环境,如何对氨氮废水进行处理,使之符合环境要求是目前需要重点关注的问题。本文的重点内容便是从氨氮的废水处理出发,分析了目前处理工作现状,并分析了几种重要的处理技术:空气吹脱法、离子交换法、化学沉淀法及蒸发浓缩结晶法。  相似文献   

7.
A/O工艺在高氨氮废水中的应用   总被引:3,自引:0,他引:3  
介绍了采用A/O工艺处理高氨氮废水的工程实例。通过近一个月的调试,出水氨氮均在5 mg/L以下,COD在50 mg/L以下;该工艺耐冲击,且处理效果稳定,处理后的出水各项指标均达到了《合成氨工业水污染物最高允许排放限值》(GB 13458-2001)的要求。  相似文献   

8.
分析了目前国内常规的对氨氮废水的处理方法,提出针对不同浓度的氨氮废水,采用不同组合的处理工艺,在使处理后的氨氮废水满足环保要求的前提下,做到工程的初期投资较少,管理运行费用较低,较好地达到经济和环境效益的统一。  相似文献   

9.
高盐度、高氨氮肠衣废水的治理研究   总被引:2,自引:0,他引:2  
高盐度、高氨氮肠衣废水经过简单的絮凝预处理后,进行PAC-SBR生化处理。在原水Cl ̄-,NH_3-N,CODc_r浓度分别高达9000mg/L,145mg/L和2000mg/L时,预处理CODc_r可去除30%以上。生化法取得了95%以上的NH_3-N去除率及90%左右的CODc_r去除率.脱氮效果显著,Cl ̄-对系统的生化能力无明显影响.  相似文献   

10.
采用SBR工艺对高盐度海产品加工废水进行了试验研究,结果表明,海产品加工废水中氯离子浓度不超过10000mg/L的情况下,采用具有一定耐盐度冲击负荷能力的SBR工艺是可行的;当进水中COD_(Cr)浓度为700~1000mg/L、NH4+-N浓度为80~120mg/L、[Cl-]≤8000mg/L的情况下,出水COD_(Cr)、NH3-N去除率分别为77.9%~81.2%、69.5%~76.6%,当进水中氯离子浓度继续增加,系统受盐度的影响加剧,处理效果变差。  相似文献   

11.
试验结果表明,以甲壳素为载体的复合式膜生物反应器,在进水氨氮浓度为2100mg/L,氨氮容积负荷为2.19kg/(m3.d)时,氨氮去除率接近100%,系统运行稳定。载体投加量为2.778g/L时,膜通量可维持在87%左右。  相似文献   

12.
生物砂滤池对有机物和氨氮的去除   总被引:3,自引:0,他引:3  
当在常规工艺前加生物预处理并取消预加氯时,砂滤池就成为生物砂滤池。与普通砂滤池相比其对有机物、氨氮和浊度的去除率都有很大的提高。实验以珠江源水为水源研究了生物砂滤池对高锰酸盐指数、NH3-N、NO2--N和浊度的去除,在实验期间生物砂滤池出水高锰酸盐指数、NH3-N、浊度平均值分别为1.32mg/L、0.098mg/L、0.171NTU,其相对于沉淀池出水的高锰酸盐指数、NH3-N、浊度的平均去除率分别为18.52%、72.93%、64.45%,而砂滤池出水NO2--N几乎检测不出来。滤池进水与出水溶解氧的变化也证明了砂滤池中生物的存在,并且生长状况良好。  相似文献   

13.
折点氯化法处理高NH3-N含钴废水试验与工程实践   总被引:9,自引:0,他引:9  
高NH3-N化学冶金废水是一种难处理废水。针对该类废水NH3-N高,含盐量高,难以生化处理的特征,首先对应用折点氯化法处理该类废水进行了实验室小试研究,根据试验结果进行了工程实践,出水达到了国家二级标准要求,并对工程实践中需注意的问题进行了总结。  相似文献   

14.
湿式催化氧化法(CWO)处理高浓度有机废水研究   总被引:11,自引:1,他引:11  
通过引进、消化、吸收日本大阪煤气公司先进的CWO高浓度生化难降解工业有机废水处理技术及对该技术的国产化研究,自主设计、制造、集成建设和运行了一套20m3/dCWO技术工业应用装置,试验结果表明,该装置对造纸黑液和焦化废水等有机废水具有良好的净化处理性能,CODcr、NH3-N等的去除率均达99%以上,且脱色、脱臭效果明显.  相似文献   

15.
浅谈高浓度氨氮废水处理的可持续发展方向   总被引:4,自引:1,他引:4  
基于可持续发展观念,简评了目前一些常用的和新研发的氨氮废水处理方法,认为既能高效脱氮又能充分回收氨的磷酸铵镁(MAP)沉淀法和可节能减耗的生物脱氮新工艺,将是未来高浓度氨氮废水处理的优先选择和发展方向。  相似文献   

16.
催化湿式氧化法处理高浓度有机废水的动力学模型   总被引:8,自引:0,他引:8  
在270℃、8.8MPa条件下用催化湿式氧化法试验处理高浓度工业有机废水,反应时间10 ̄15min时,废水中TOC浓度可由17900mg/L降至100mg/L以下。针对这一多相催化氧化反应过程,以TOC为目标污染和,研究建立了涉及液、气、固三相的反应动力学模型。反应时间、瓜器TOC浓度、反应压力和反应温度等主要因素对反应器净化TOC性能影响的试验表明,该模型计算值与实验值有很好的相关性(相关系数R  相似文献   

17.
印染及染料行业废水生物处理系统中的AOX污染研究   总被引:1,自引:4,他引:1  
在印染和染料行业发达的长三角地区选取了6家大型印染企业和4家大型染料生产企业,研究了废水和生物处理污泥中AOX的污染水平,并使用气相色谱质谱分析了AOX的物质结构特征.结果表明,6家印染企业的废水原水AOX质量浓度较低,为0.15~1.62 mg·L-1,处理出水AOX质量浓度为0.06~1.30 mg·L-1,满足《纺织染整工业水污染物排放标准》的特别排放限值8 mg·L-1;活性污泥中AOX含量一般都低于621 mg·kg-1,但个别企业含量很高,达到3 280 mg·kg-1.染料生产企业废水原水的AOX质量浓度差异较大,为1.70~78.72 mg·L-1,出水AOX质量浓度为1.88~33.11 mg·L-1,远高于印染企业出水;污泥中AOX含量也普遍较高,为960~2 297 mg·kg-1.染料废水中的有机卤代物主要包括氯苯类、氯硝基苯类、氯苯胺类、氯硝基苯胺类及卤代苯酚类物质.卤代苯酚类和氯硝基苯胺类较易被生物去除;单氯苯胺、单氯硝基苯类比多氯苯胺、氯硝基苯类易被生物去除;而多氯苯类物质较易被生物去除从而产生较难生物去除的氯苯.  相似文献   

18.
针对重污染废水监测面临检测难度大、精度不高的问题,提出一种基于修正模型的重污染废水监测系统,该系统使用先进的电子微监测分析仪,对采集的数据进行分析,同时引入一种数学模型进行数据的修正.通过数据修正运算能够有效的对水中的重污染物进行高精度的测量.实验证明:监测系统可以解决对重污染废水中监测精度不高的问题.并且通过实验进行了有效的验证.实验证明,该方法对水域中的重污染废水的污染准确检测,抗干扰能力和精度满足要求.  相似文献   

19.
以测定高浓度有机废水的可酸化性和酸化度为目的,研究了蔗糖-蛋白胨人工配水的酸化过程。实验结果表明,蔗糖-蛋白胨人工配水的可酸化性的计算值为0.80;振荡条件下COD为1065~31950mg/L的废水的酸化度为100%,COD为426100~63900mg/L的废水的酸化度介于79%~90%;静态条件下COD为1065~63900mg/L的废水酸化度介于64%~99%;酸化过程中通过振荡培养,改变传质条件,可以提高酸化速度,缩短可酸化性测定时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号