首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过宏观检查、金相显微观察、电子扫描显微镜观察、X射线能谱仪检测等手段,对送检的DN350大拉杆补偿器进行失效分析。结果表明,其失效模式主要为应力腐蚀开裂,开裂位置处于补偿器的316L奥氏体不锈钢波纹管部分,裂纹呈分叉状,开裂的断面呈沿晶断裂和撕裂韧窝的组合形貌特征,裂纹周围的泥纹状腐蚀产物中含有外来腐蚀介质氯元素。进一步揭示腐蚀、应力腐蚀、疲劳开裂等失效模式的特征和机理,对不锈钢补偿器几种典型失效模式进行归纳,并从设计、制造、安装、试压和服役使用环节有针对性地提出失效预防措施和建议。  相似文献   

2.
储氧球罐进出气阀对接法兰开裂情况监控及失效分析   总被引:1,自引:0,他引:1  
通过化学成分、金相、断口及能谱分析等手段,对储氧球罐进出气阀对接法兰开裂失效的原因进行了分析.分析结果表明,法兰开裂为高锰奥氏体不锈钢材质法兰的沿晶脆性断裂,高锰奥氏体不锈钢不适合作为高颈法兰用钢.  相似文献   

3.
计量分离器至加热炉的生产汇管,由于其输送介质的特殊性,汇管出现腐蚀失效。通过对腐蚀失效油管进行的化学成分分析、金相分析、腐蚀区域微观分析和油腐蚀产物评价,结果表明失效与材质无关,其化学成分均符合技术协议要求并由铁素体+珠光体组成。腐蚀介质中由于含有溶解氧,钢材表面发生了氧还原反应,钢材表面形成酥松的α-FeOOH,并由于氯离子的存在,最终导致生产汇管由内腐蚀发展为腐蚀穿孔。  相似文献   

4.
在某电厂蒸汽管道所使用的流量装置发生裂爆事故后,对事故现场进行资料核查,并对事故流量计进行外观检查、金相分析、材料成分分析和微观形貌分析。焊缝宏观检查发现存在严重的焊缝不连续、未焊透、未熔合、夹渣、弧坑裂纹等缺陷,这些缺陷遍布整个焊缝。扫描电镜和金相分析发现破断焊缝断口上有典型的脆性沿晶开裂特征,并伴有沿晶次裂纹。对流量计与主蒸汽管道安装位置焊缝的金相分析发现此处焊缝微观组织合理。  相似文献   

5.
某企业燃生物质锅炉的三根水墙管出现穿孔泄漏。本文通过壁厚检测、材质分析、金相检验、水垢及腐蚀产物分析、力学性能试验等等对锅炉水墙管穿孔原因进行了分析,结果表明锅炉水墙管内部存在厚达4mm的水垢及腐蚀产物,水墙管壁厚出现了腐蚀减薄,向火面出现碳化物球化和力学性能下降情况,锅炉给水硬度等严重超标。管内的水垢及腐蚀产物主要为Fe_3O_4和CaSO_4等盐类。由于水墙管被较厚水垢覆盖、导热性能变差形成高温,发生了高温垢下腐蚀,并在局部形成穿孔泄漏。  相似文献   

6.
某煤化工装置一工业管道中的奥氏体不锈钢三通在使用过程中发生开裂失效,本文对该三通进行了检测和取样试验,包括宏观检查、硬度测定、金相分析、扫描电镜观察和能谱分析,并对失效原因进行了详细分析,结果表明该三通因材料发生腐蚀疲劳而引起开裂,最后给出了有针对性的建议。  相似文献   

7.
某水泥余热发电锅炉分汽缸补焊缝及附近母材出现大量裂纹,部分裂纹出现穿透;宏观观察发现分汽缸表面覆盖有大量黑色粉尘状物质,裂纹沿焊缝呈环向或纵向分布;金相分析及扫描电镜形貌观察结果可见焊缝断口主要为沿晶开裂,同时在断口附近发现大量的沿晶二次裂纹;EDS能谱分析与X射线衍射物相分析结果表明分汽缸窑头侧内壁存在大量碳酸盐和碱浓缩;通过对补焊的未开裂焊缝和附近筒体母材分别进行残余应力测试,结果表明焊缝位置最大应力达251MPa,超出材料屈服强度。综合分析表明:分汽缸内壁存在碳酸盐积聚和碱浓缩,在焊接残余应力和工作应力等因素的共同作用下,分汽缸焊缝及附近区域出现了应力腐蚀开裂。  相似文献   

8.
本文对某油田集输站管道上多只安全阀拒动失效的原因进行了分析,确定因地排罐呼吸阀损坏,罐内形成的蒸汽混合物沿管道进入安全阀腔体内,冷却后产生凝水聚集,在长期高温潮湿环境下阀体内部、弹簧及弹簧底座发生电化学腐蚀,产生的腐蚀物造成阀杆与弹簧底座、导向套粘连,致使站内所有安全阀拒动失效。并提出了解决方法及预防措施,避免了因安全阀拒动失效造成承压设备损坏及重大安全事故的发生。  相似文献   

9.
在低温储罐定期检验中,发现储罐底部一个三通切换阀管件上存在多处裂纹及泄漏现象。通过对失效件进行宏观检验、化学成分、电镜扫描、金相组织、腐蚀产物能谱、非金属夹杂物含量、显微硬度等进行测试,结果表明:管件材质低于设计要求,管件承受载荷及应力作用,存在CI-等奥氏体不锈钢腐蚀敏感介质,造成该处奥氏体不锈钢管件应力腐蚀失效。  相似文献   

10.
某304L不锈钢废水管线使用30天左右即发生腐蚀泄漏。采用宏观检验、化学成分分析、金相检验、电镜观察、三氯化铁试验等分析方法,对该废水管道的腐蚀泄漏进行失效分析。分析结果表明,该不锈钢管线所通的废水中含有高浓度的Cl-,且试运行后一直未使用,最终在管内残留废水的作用下发生了点蚀穿孔。  相似文献   

11.
在某火力发电厂660MW超临界机组在役锅炉检修过程中,发现左侧水冷壁上集箱筒体外壁存在一条长达1520mm的纵向裂纹。通过光谱分析、硬度测试、金相显微组织试验和应力分析等方法结合筒体的成型工艺,对裂纹的形成原因进行分析。结果表明:集箱筒体原材料管坯经热加工成型后,在外壁形成与金属锻造流线方向一致的分层缺欠是引发裂纹的原因。集箱在后续的使用过程中,经高温、高应力工作环境服役后引起分层缺欠处夹杂物剥落和组织发生变化而形成裂纹源,随着服役时间的增加,裂纹不断扩展,由开始的沿晶开裂特征,慢慢演变成穿晶开裂特性。  相似文献   

12.
针对某高压循环流化床锅炉水冷壁管底部弯管处爆管原因进行失效分析,通过对爆管管段进行宏观检查、化学成分分析、力学性能分析、腐蚀产物分析、金相分析以及运行期间水质化验记录调查,表明锅炉水质p H偏高时在密相区弯管处向火侧内壁发生碱浓缩引起碱腐蚀,弯管处存在的残余应力在强碱性环境下引起碱应力腐蚀,两者共同作用导致了本次爆管的发生。加强水质监控和消应力处理可有效防止碱腐蚀和碱应力腐蚀。  相似文献   

13.
运用金相、扫描电镜、能谱分析、化学成分分析等理化方法,结合实际工况,对某化工厂苯乙烯装置脱轻组分塔塔顶冷凝系统设备失效的案例进行分析。经研究,设备失效的机理为氯离子应力腐蚀开裂和酸性水腐蚀,可采用升级选材、加注缓蚀剂等改进措施,有效控制设备腐蚀情况。结果表明:该装置的腐蚀情况得到极大程度改善,可为今后同类设备设计选材及腐蚀控制提供借鉴。  相似文献   

14.
火力发电厂管件失效泄漏是频发事故,严重影响机组的安全、经济运行。以某发电厂后墙省煤器和低温再热器管子失效泄漏事故为例,通过对失效泄漏的管件进行宏观形貌分析、金相分析和强度分析,论证了泄漏事故的原因是由于腐蚀和钢管固有缺陷导致低温再热器高温段弯管外侧发生泄漏,泄漏的高速流体冲刷、气蚀导致后隔墙省煤器发生泄漏,进而对低温再热器反冲刷,加剧泄漏事故的恶化。最后提出更换失效管件,加强金属监督,尽量扩大防磨防爆检查范围,对易被气流磨损、冲刷部位进行防磨喷涂或加装防磨罩。  相似文献   

15.
在对某电厂一台420t电站锅炉检验过程中,发现该锅炉水冷壁管存在结垢现象,水冷壁管垢下腐蚀会对锅炉的安全、经济运行造成影响。通过均匀腐蚀失效试验、氢脆腐蚀失效试验确定其腐蚀原理,并对其腐蚀速率进行了研究。  相似文献   

16.
通过宏观检查、力学性能试验、金相检验、微观形貌观察及化学成分分析等方法,对某670MW超临界锅炉TP347H末级再热器爆管进行了失效分析。结果表明:管子弯头未固溶处理导致材料存在较高的残余应力和位错密度,残余应力和位错在奥氏体耐热钢敏化温度区间会加速晶界处富Cr碳化物M23C6的析出,造成晶界贫铬,严重降低了晶界的耐腐蚀性能。再热器管弯头在应力和腐蚀介质的交互作用下产生了应力腐蚀裂纹,长时间运行导致裂纹扩展,从而导致爆管。为避免类似事故,提出了几点预防措施。  相似文献   

17.
蒙乃尔合金酸蒸发器,在应用中短期内出现泄漏失效,本文通过宏观、化学成分、金相分析、扫描电镜分析等分析试验,分析酸蒸发器泄漏失效的原因,提出了预防措施。  相似文献   

18.
某厂3台煤粉锅炉自投用以后频繁发生水冷壁管爆管失效,严重影响了装置的稳定运行。为了解锅炉水冷壁管发生频繁失效的原因,对其中两次典型爆管事故进行了详细的检测和分析,分析手段包括:宏观检查、壁厚测量、化学成分分析、硬度测量、金相分析、扫描电镜观察、能谱分析等。通过分析后认为其中一次爆管事故是由于锅炉水介质pH值偏高,锅炉水中杂质元素在水冷壁管表面形成积垢,导致垢下发生碱液浓缩致垢下碱腐蚀减薄导致爆管;另一次大规模爆管是由于锅炉水中漏入酸性介质后导致锅炉水pH值急剧降低,锅炉水冷壁管发生高温氫损伤导致的。基于这两次大规模爆管的失效分析结果制定了详细的改进措施,使锅炉水冷壁管发生类似失效事件的频率大大降低。  相似文献   

19.
本文针对某大型煤制甲醇项目废热锅炉频繁爆管事故进行分析,通过宏观检验、涡流检测、化学成分分析、力学性能试验、金相分析、扫描电镜观察和能谱分析等方法,研究了废热炉换热管(0Cr18Ni10Ti)爆裂原因,得出结论:换热管爆裂失效属湿硫化氢应力腐蚀(SSCC),原因为换热管与管板接头密封缺陷,废热炉发生了泄漏。  相似文献   

20.
在对还原炉进行检验时,在其内筒(316L不锈钢)焊缝附近发现了点腐蚀和裂纹,为分析上述缺陷形成原因,笔者设计了一个还原炉腐蚀缺陷的试验研究系统,对316L不锈钢进行腐蚀试验研究。通过金相显微镜、扫描电镜观察及EDS分析等手段,研究了腐蚀机理,并提出了预防措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号