首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out to evaluate the in vitro antioxidant properties and protective effects of silymarin (milk thistle) in human erythrocyte haemolysates against benzo(a)pyrene [B(a)P], a potent carcinogenic chemical. Protective effect of silymarin was assessed in vitro by monitoring the antioxidant enzymes and malondialdehyde in three groups of haemolysates-(I) vehicle control (II) B(a)P incubated group and (III) B(a)P co incubated with silymarin. The effects of silymarin on lipid peroxidation (LPO) and antioxidant enzymes [superoxide dismutase; SOD, catalase; CAT, glutathione peroxidase; GPx, glutathione reductase; GR and glutathione-S-transferases; GST] were assessed on haemolysates. It was observed that specific activity of antioxidant enzymes were significantly decreased and the malondialdehyde levels were elevated when haemolysates were incubated with B(a)P. The protective effect of silymarin is elucidated by the significant reversal of the antioxidant enzymes and reduction in the levels of malondialdehyde. In addition, haemolysates were incubated with B(a)P for 45 min and the B(a)P metabolite, 3-hydroxy benzo(a)pyrene (3-OH-B(a)P) was detected using HPLC. An increased level of the metabolite was detected in group II. Whereas, when haemolysates were co-incubated with silymarin, the reactive metabolite 3-OH-B(a)P was not detectable which further confirms the protective role of silymarin. Generation of 3-OH-B(a)P in group II implicates the possibility of reactive oxygen species (O2- and H2O2) production in haemolysates during cytochrome P4501A1 (CYP1A1) mediated Phase-I-metabolism. Hence, we incubated the haemolysates with exogenous reactive oxygen species H2O2 and assessed the protective role of silymarin against H2O2. From the results of our study, it was suggested that silymarin possess substantial protective effect and free radical scavenging mechanism against environmental contaminants induced oxidative stress damages.  相似文献   

2.

The aim of our study is to evaluate the impact of Bousfer desalination plant brine discharges on the Algerian west coast, on a natural population of the marine gastropod mollusc Patella rustica. The effects of a chronic exposure to such discharges are complex to understand due to the combined effects of environmental physico-chemical parameters (e.g., high salinity) and different pollutants that can modulate the physiological responses of this species to stress. In this context, we assessed the biological effects in a marine species P. rustica, by a multibiomarker approach that provided information on the health status of organisms in response to such an environmental stress. We measured biomarkers in the whole soft tissues of limpets as indicators of neurotoxicity (AChE activity), oxidative stress (CAT, SOD, GR, and GPx activities), biotransformation (GST), oxidative damage (LPO through TBARS levels), and genotoxicity (CSP 3-like activity). In parallel, hydrological parameters were measured in the Bay of Oran, at four selected sites: site H considered as a “hotspot,” located at Bousfer desalination plant; two other sites E and W, at the east and the west of H respectively; finally, site R “reference” located in Madragh, which is considered as a remote clean site. Our analyses revealed that the activities of antioxidant defense enzymes reached the highest levels in P. rustica collected from site H. The activation of antioxidant defense system in these organisms translated the alteration of their status health, reflecting a level of environmental disruption generated by the desalination plant brine discharges and the high salinity in this area. We also observed that the tissues of limpets collected from site H as well as the two other sites, E and W, had undergone molecular damage, confirmed by the high levels of CSP 3-like activity. This damage resulted from chronic exposure to environmental conditions, potentially genotoxic, due to the desalination plant discharges. The present results indicate the adverse impact of brine effluents from desalination plants on marine fauna and suggest the need for a more consistent approach to environmental management of brine discharges.

  相似文献   

3.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

4.
5.
Tripathi BN  Mehta SK  Amar A  Gaur JP 《Chemosphere》2006,62(4):538-544
Algae are exposed to elevated levels of heavy metals in water bodies generally for a long-term, and occasionally for a short-term duration. The present study deals with oxidative stress in Scenedesmus sp., commonly found in nutrient-rich freshwaters, during short- (6h) and long-term (7d) exposure to Cu(2+) and Zn(2+). The cells accumulated almost 2- and 4-times more Cu(2+) and Zn(2+) inside the cells during long-term than during short-term exposure to these metals. But the data on photosynthetic O(2) evolution and cell viability suggest that Scenedesmus sp. experienced lesser metal stress in long-term than in short-term experiment. Although malondialdehyde content was slightly higher in the long-term experiment, the amount produced by one unit intracellular metal was significantly lower than that in the short-term experiment. Superoxide dismutase activity of Scenedesmus sp. was >30% higher during long-term than during short-term exposure to Cu(2+) and Zn(2+). But, catalase and ascorbate peroxidase activities increased only at 2.5 microM Cu(2+) and 25 microM Zn(2+) when oxidative stress was mild, but were inhibited at 10 microM Cu(2+) under intense oxidative stress. Cu(2+) and Zn(2+) reduced glutathione reductase activity and total SH content of Scenedesmus sp. in both the experiments, with greater reduction occurring in the long-term experiment. The depletion of total thiol was positively related with the intracellular level of metals. Thiols might have helped Scenedesmus sp. in overcoming metal-induced oxidative stress, but depletion of thiol pool is known to make cells vulnerable to oxidative stress. The study suggests that antioxidant enzymes play a role only under mild oxidative stress. An increased accumulation of proline seems to be an important strategy for alleviating metal-induced oxidative stress in Scenedesmus sp. The study shows that Scenedesmus sp. could acclimatize during long-term exposure to toxic concentrations of the test metals.  相似文献   

6.
Time-dependent changes in enzymatic and non-enzymatic antioxidants, and lipid peroxidation were investigated in roots of rice (Oryza sativa) grown hydroponically with Cd, with or without pretreatment of salicylic acid (SA). Exposure to 50 microM Cd significantly decreased root growth, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), but increased the concentrations of H(2)O(2), malondialdehyde (MDA), ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT). However, pretreatment with 10 microM SA enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants, but lowered the concentrations of H(2)O(2) and MDA in the Cd-stressed rice compared with the Cd treatment alone. Pretreatment with SA alleviated the Cd-induced inhibition of root growth. The results showed that pretreatment with SA enhanced the antioxidant defense activities in Cd-stressed rice, thus alleviating Cd-induced oxidative damage and enhancing Cd tolerance. The possible mechanism of SA-induced H(2)O(2) signaling in mediating Cd tolerance was discussed.  相似文献   

7.
8.
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata.  相似文献   

9.
Ahmad I  Pacheco M  Santos MA 《Chemosphere》2006,65(6):952-962
Pateira de Fermentelos (PF) is a natural freshwater wetland in the central region of Portugal. In the last decade, the introduction of agricultural chemicals, heavy metals, domestic wastes, as well as eutrophication and incorrect utility of resources resulted in an increased water pollution. The present research work was carried out to check the various oxidative stress biomarker responses in European eel (Anguilla anguilla L.) gill, kidney and liver due to this complex water pollution. Eels were caged and plunged at five different PF sites (A-E) for 48h. A reference site (R) was also selected at the river spring where no industrial contamination should be detected. Lipid peroxidation (LPO), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and reduced glutathione (GSH) were the oxidative stress biomarkers studied. In gill, site A exposure induced a significant GST activity increase and site B exposure induced CAT activity increase when compared to R. Site C exposure showed a significant CAT and GPX activity increase. Data concerning site D exposure were not determined due to cage disappearance. Site E exposure displayed a significant CAT and GST activity increase. In kidney, site A exposure induced a significant CAT and GPX decrease as well as a GST increase. Site B exposure showed a significant decrease in GPX activity and GSH content. However, site C exposure demonstrated a significant increase in CAT and a decrease in GPX. Site E exposure showed a significant decrease in GPX and increase in GST. In liver, site A exposure showed a significant GST activity decrease as well as GSH content increase. Site B exposure showed a significant CAT, GST and LPO decrease. Site C exposure showed only GST activity decrease, while site E exposure induced a significant increase in GPX. These investigation findings provide a rational use of oxidative stress biomarkers in freshwater ecosystem pollution biomonitoring using caged fish, and the first attempt reported in Portugal as a study of this particular watercourse under the previous conditions. The presence of pollutants in the PF water was denunciated even without a clear relation to the main pollution source distance. The organ specificity was evident for each parameter but without a clear pattern.  相似文献   

10.
The redox cycling of heavy metals as well as their interactions with organic pollutants is a major contributor to the oxidative stress resulting from aquatic pollution. Therefore, in order to evaluate beta-naphthoflavone (BNF), Cu and BNF/Cu-induced oxidative stress with single and subsequent exposures, research was carried out in European eel (Anguilla anguilla L.). Eel gill and kidney oxidative stress biomarker responses such as lipid peroxidation (LPO), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST) and total reduced glutathione (GSH) to a single 24 h exposure to two copper concentrations (Cu-1 microM, 2.5 microM) and BNF (2.7 microM) with or without 24 h BNF (2.7 microM) pre-exposure were investigated. Cu exposure alone showed a significant gill GST increase at the lowest concentration and GSH content decrease for the highest concentration. Double BNF exposure in gill demonstrated a significant increase in LPO, CAT, GPX and GST, as well as a decrease in GSH content. However, in sequential BNF/Cu exposures, only the highest Cu concentration exhibited a significant increase in LPO and GSH as well as a decrease in GPX (vs. BNF + CW). In kidney, Cu exposure alone showed a significant CAT and GSH contents decrease for both concentrations, and at highest concentration in GPX; as well as GST increase at the lowest concentration. Double BNF exposure showed a significant increase in LPO and GST. Nevertheless, in sequential BNF/Cu exposures, both concentrations exhibited a significant increase in LPO and decrease in GSH contents. Moreover, LPO was also increased significantly in comparison to BNF+CW and the equivalent Cu exposures without BNF pre-exposure. Concerning GPX, a significant increase was observed at highest Cu concentration. In GST, a significant decrease at the lowest Cu concentration and increase at the highest Cu concentration was observed. Summarizing, a simple copper or BNF exposures have no ability to induce LPO in both gill and kidney. However, double BNF exposure induced LPO in both organs and sequential BNF/Cu exposures potentiated the risk of peroxidative damage occurrence in both organs. BNF/Cu interference on antioxidant responses differs between the studied organs. In gill, antagonistic effects were denoted with probable reflex in terms of peroxidative damage increase. In kidney, BNF pre-exposure prevented CAT and GPX inhibition by copper; though, no advantage of this effect was perceptible as defence against LPO generation. Considering BNF as a surrogate for a PAH and the detected interactions with copper, as well as the likelihood that these effects would be observed in polluted ecosystems, current results demonstrate their relevance to actual ecological exposures contributing to a better knowledge on oxidative stress mechanisms in fish.  相似文献   

11.
Contardo-Jara V  Wiegand C 《Chemosphere》2008,70(10):1879-1888
In this study the black worm Lumbriculus variegatus was tested for suitability as biomonitor for moderately contaminated sediments. The response capacity of the biotransformation system phase II enzyme glutathione-S-transferase (GST) and the oxidative defense enzyme catalase (CAT) to contaminated sediment and atrazine was investigated to establish them as sensitive biomarkers. To get an integrated view on the enzyme activity kinetics, increasing concentrations of the herbicide atrazine were applied to stimulate GST response, and relationship between enzyme activity and herbicide concentration was observed at various exposure durations. Furthermore, animals were exposed for up to 1 week to sediments of four typical urban river sections with high anthropogenic impact. L. variegatus was capable to accomplish the environmental stress and the selected enzymes showed elevation. Significant changes of GST (membrane-bound and soluble) were detected after at least 4 days of exposure to atrazine and contaminated sediments. Although CAT increase could be observed already after 1 day of exposure to sediments, an exposure time of one week is considerable for accurate interpretation of the enzymatic response. The clear enzymatic response of especially the membrane-bound GST indicated charges with organic lipophilic substances at all sampling sites.  相似文献   

12.
To utilize the GST-S protein as a useful biomarker for environmental contamination, we developed a polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) in the intertidal copepod Tigriopus japonicus. Two polyclonal antibodies, TJ-GST-S1 and TJ-GST-S2, were raised against two TJ-GST-S synthetic peptides. Also a recombinant TJ-GST-S protein was purified as a standard for ELISA development. Each polyclonal antibody was tested by Western blot analysis and indirect ELISA. Of two polyclonal antibodies, TJ-GST-S2 ELISA was further employed due to its wide range of detection and the limit of specificity compared to those of TJ-GST-S1 ELISA system. After exposure to 4 metals (Ag, As, Cd, and Cu) to T. japonicus, the amount of TJ-GST-S protein was significantly elevated in a concentration-dependent manner. Also, TJ-GST-S protein was upregulated at relative high concentrations of B[α]P, PCB, and TBT. In this paper, we suggest that T. japonicas ELISA for TJ-GST-S2 is useful as a potential indicator system for marine contaminants.  相似文献   

13.

In this study, we investigated the combined effects of temperatures fluencies and mercury (Hg) on glutathione-dependent antioxidant system in fish, by measuring the oxidative stress indicator (LPO, lipid peroxidation) and the parameters involved in the glutathione-related antioxidant defense system (GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; GSH, reduced glutathione), as well as the expression of related genes in grass carp, Ctenopharyngodon idella. Fish (45.37?±?3.58 g) were exposed to 10 test groups, e.g., 15 °C with/without Hg, 20 °C with/without Hg, 25 °C with/without Hg, 30 °C with/without Hg, 35 °C with/without Hg for 4 weeks. Three-way ANOVA was used to analyze the correlation between the measured parameters and experimental conditions (water temperature, Hg exposure, exposure time, and their interactions.). Our results show that there is no interaction between mercury and low temperature, but the combined effect at high temperature has been confirmed, which indicated the glutathione-dependent enzyme system in grass carp has a complex regulatory mechanism with temperature fluctuations. In the actual field monitoring, it is necessary to consider the impact of extreme temperature on the toxicity of pollutants in the aquatic ecosystem.

  相似文献   

14.
Sun Y  Yu H  Zhang J  Yin Y  Shi H  Wang X 《Chemosphere》2006,63(8):1319-1327
In this study, laboratory experiment was carried out to determine phenanthrene bioaccumulation, depuration in whole fish and oxidative stress in the liver of freshwater fish Carassius auratus. Fish were exposed to 0.05 mg/l phenanthrene for different periods, while one control group was designated for each exposure group. Some fish after 7 days of exposure were transferred to diluted water. The concentrations of phenanthrene in fish were analyzed by HPLC. Twenty-four hours after the exposure, reactive oxygen species (ROS) were trapped by phenyl-tert-butylnitrone and detected by electron paramagnetic resonance (EPR). The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) were also determined. The concentrations of phenanthrene in fish increased rapidly shortly after the start of the exposure, reached a maximum level at the 2 days, and then it declined quickly to low-level-steady state. The elimination process of phenanthrene could be divided into two periods-a fast elimination period following a slower loss period. The elimination curve could be fitted mathematically as the sum of two exponential functions according to two-compartment model: C(t)=2.72e(-1.065t) + 0.68e(-0.0364t). The PBN-radical adducts were detected in fish liver samples following the exposure 24h. The hyperfine splitting constants for the PBN-radical adducts were aN = 13.5 G, aH = 1.77 G and g value was 2.0058, which were consistent with those of PBN/()OH. The results indicated that the hydroxyl radical was probably significantly induced during the exposure of phenanthrene, as compared to the control group. The changes of activities of the antioxidant enzymes also were observed. In addition, after fish were removed from phenanthrene exposure, the recovery status of these antioxidant indices was explored. These results clearly indicated phenanthrene could be accumulated in fish and similar redox cyclings were produced, resulting in the changes of the activities of the antioxidant enzymes and the production of ROS with the oxidative stress.  相似文献   

15.
Lee KW  Raisuddin S  Hwang DS  Park HG  Dahms HU  Ahn IY  Lee JS 《Chemosphere》2008,72(9):1359-1365
Previous studies on the intertidal copepod Tigriopus japonicus have demonstrated that it is a suitable model species for the assessment of acute toxicities of marine pollutants. In order to standardize T. japonicus for use in environmental risk assessment involving whole life cycle exposure, we tested nine pollutants for their effects on growth and reproduction during a two-generation life cycle exposure test. Nauplii (F 0) were exposed to a range of concentrations of each chemical in a static renewal culture system. Broods of the second generation (F1) were subsequently exposed to the same concentrations for one full life cycle. Of the seven traits (nauplius phase, development time, survival, sex ratio, number of clutch, nauplii per clutch and fecundity), only the length of the nauplius phase and development time showed a greater sensitivity to chemical exposure. Between the two sensitive traits, the period of the nauplius phase was more sensitive than cohort generation time. Biocides significantly increased the maturation period of nauplii as well as copepodids in F 0 generation. In this study, it was demonstrated that T. japonicus could also be used in reproduction and life cycle tests and it provides an opportunity for testing the chronic and subchronic toxic effects of marine pollutants. Further validation and harmonization in a multi-centric study involving other laboratories of the region will strengthen its use as a supplement to existing model species.  相似文献   

16.
Chitosan is a natural polymer which has the property to elicit the natural defenses mechanism in plant and which can be an interesting biopesticides. It is then necessary to investigate the potential toxicity of chitosan for aquatic animal health. Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MTs contents had been considered as a specific biomarker of metal exposure. However recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and anti-oxidative defenses. Therefore, the induction of MTs has been investigated in the aquatic worms Tubifex tubifex exposed to chitosan. MTs levels in exposed worm increased significantly (p > 0.05) after 2, 4, and 7 days of exposure to different concentrations of chitosan (maximum + 158.19 +/- 10.2% after 2 days of exposure to 125 mgl(-1) of chitosan). Several antioxidant parameters including glutathione (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were quantified in T. tubifex after 2, 4, and 7 days of exposure to chitosan. Exposure to chitosan had a negative effect on T. tubifex growth (maximum effect -6.11 +/- 1.6% after 7 days with 125 mgl(-1)) demonstrating the toxic effect of the pesticide. This growth rate decrease was accompanied by a reduction in protein contents. The activity of catalase (CAT), glutathione-S-transferase (GST), and glutathione reductase (GR) increased in response to the chitosan demonstrating an oxidative stress in the worms.  相似文献   

17.
The objective of this study was to assess the potential toxic effects of hexabromocyclododecane (HBCD) on tissues of clam Venerupis philippinarum using parameters of antioxidant defenses and oxidative stress. Antioxidant biomarkers including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), and glutathione (GSH), as well as DNA damage and lipid peroxidation (LPO) in gills and digestive glands of V. philippinarum, were analyzed after a 1-, 3-, 6-, 10-, and 15-day exposure to seawater containing HBCD at environmentally related concentrations, respectively. The results showed that the activity of most antioxidant enzymes increased, and different trends were detected with exposure time extending. The oxidative stress could be obviously caused in the gills and digestive glands under the experimental conditions. This could provide useful information for toxic risk assessment of environmental pollutant HBCD.  相似文献   

18.
The joint action of pyrethroids, lambda-cyhalothrin (LC) in combination with organophosphates, fenitrothione (FNT) on antioxidant defense system and lipid peroxidation biomarkers in rat testes was studied. The results suggest that incubation of testes homogenate with different concentrations of insecticide mixture for different time intervals significantly decreased the activity of antioxidant enzymes, like glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of reduced glutathione (GSH). In addition, a significant inhibition in transaminases (AST, ALT), phosphatases (AcP, AlP) activity and protein content were observed. On the other hand, FNT plus LC increased the cellular lipid peroxidation (LPO) level and the activity of lactate dehydrogenase (LDH). In conclusion, the use of insecticides mixture might cause marked oxidative damage in a concentration and time-dependent manner.  相似文献   

19.
Biochemical responses on the bases of activities of antioxidant enzymes; peroxidase, catalase, superoxide dismutase and glutathione reductase as well as estimations of total protein, lipid peroxidation and thiols in the form of protein, non-protein, glutathione and phytochelatin measured in growing seedlings of barley, Hordeum vulgare L., from Day 2 through 8 were compared following treatment of seeds for 2 h with oxidative agents, paraquat 5 x 10(-5), 10(-4), 10(-3) M, H2O2 10(-3), 5 x 10(-3), 10(-2) M and a metal salt, CdSO4 10(-5), 10(-4), 10(-3) M. A significant induction of all antioxidant enzymes along with an increase in the levels of protein, lipid peroxidation and glutathione was noted in response to oxidative stress, CdSO4 induced significant peroxidase and catalase activities but not superoxide dismutase. In a marked contrast from oxidative stress, CdSO4 decreased glutathione reductase activity as well as glutathione levels but increased phytochelatin level. The differential biochemical responses thus underlined the crucial involvement of glutathione and phytochelatin in the oxidative and metal-induced adaptive responses, respectively.  相似文献   

20.
Exposure to chemical pollution can cause significant damage to plants by imposing conditions of oxidative stress. Plants combat oxidative stress by inducing antioxidant metabolites, enzymatic scavengers of activated oxygen and heat shock proteins. The accumulation of these proteins, in particular heat shock protein 70 and heme oxygenase, is correlated with the acquisition of thermal and chemical adaptations and protection against oxidative stress. In this study, we used Pinus pinaster Ait. collected in the areas of Priolo and Aci Castello representing sites with elevated pollution and reference conditions, respectively. The presence of heavy metals and the levels of markers of oxidative stress (lipid hydroperoxide levels, thiol groups, superoxide dismutase activity and expression of heat shock protein 70, heme oxygenase and superoxide dismutase) were evaluated, and we measured in field-collected needles the response to environmental pollution. P. pinaster Ait. collected from a site characterized by industrial pollution including heavy metals had elevated stress response as indicated by significantly elevated lipid hydroperoxide levels and decreased thiol groups. In particular, we observed that following a chronic chemical exposure, P. pinaster Ait. showed significantly increased expression of heat shock protein 70, heme oxygenase and superoxide dismutase. This increased expression may have protective effects against oxidative stress and represents an adaptative cellular defence mechanism. These results suggest that evaluation of heme oxygenase, heat shock protein 70 and superoxide dismutase expression in P. pinaster Ait. could represent a useful tool for monitoring environmental contamination of a region and to better understand mechanisms involved in plant defence and stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号